

Standard Recovery Diodes, (Stud Version), 600 A

PRIMARY CHARACTERISTICS				
I _{F(AV)}	600 A			
Package	B-8			
Circuit configuration	Single			

FEATURES

- Wide current range
- High voltage ratings up to 3200 V
- High surge current capabilities
- Stud cathode and stud anode version
- Standard JEDEC® types
- · Compression bonded encapsulations
- · Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

TYPICAL APPLICATIONS

- Converters
- Power supplies
- · Machine tool controls
- High power drives
- Medium traction applications

MAJOR RATINGS AND CHARACTERISTICS					
PARAMETER	TEST CONDITIONS	SD60	LINUTO		
	TEST CONDITIONS	04 to 20	22 to 32	UNITS	
I _{F(AV)}		600	600	A	
	T _C	92	54	°C	
I _{F(RMS)}		940	940		
1	50 Hz	13 000	10 500	Α	
I _{FSM}	60 Hz	13 600	11 000		
l ² t	50 Hz	845	551	kA ² s	
	60 Hz	772	503	KA-S	
V _{RRM}	Range	400 to 2000	2200 to 3200	V	
T _J		-40 to +180	-40 to +150	°C	

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS						
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	$\begin{aligned} & I_{RRM} \text{ MAXIMUM} \\ \text{AT T}_{J} &= T_{J} \text{ MAXIMUM} \\ & \text{mA} \end{aligned}$		
	04	400	500			
	08	800	900			
	12	1200	1300			
VS-SD600N/R	16	1600	1700	35		
V3-3D000IV/N	20	2000	2100	33		
	22	2200	2300			
	28	2800	2900			
	32	3200	3300			

FORWARD CONDUCTION							
PARAMETER	SYMBOL	TEST CONDITIONS		SD600N/R		0N/R	
PARAMETER	STINIBUL		TEST CONDITIONS		04 to 20	22 to 32	UNITS
					600		Α
Maximum average forward current		180° conduction, half sine wave		92	54	°C	
at case temperature	I _{F(AV)}	160 Condi	uction, nan sine	e wave	570	375	Α
			100		°C		
Maximum RMS forward current	I _{F(RMS)}	DC at T _C =	75 °C (04 to 2	0), T _C = 36 °C (25 to 32)	94	10	
		t = 10 ms	No voltage		13 000	10 500	A
Maximum peak, one-cycle forward,	l-ou	t = 8.3 ms	reapplied	Sinusoidal half wave, initial $T_J = T_J$ maximum	13 600	11 000	
non-repetitive surge current	I _{FSM}	t = 10 ms	100 % V _{RRM}		10 900	8830	
		t = 8.3 ms	reapplied		11 450	9250	
	l ² t	t = 10 ms	No voltage		845	551	kA ² s
Maximum I ² t for fusing		t = 8.3 ms	reapplied		772	503	
Waxiindiii i cioi idaiiig		t = 10 ms	100 % V _{RRM}		598	390	
		t = 8.3 ms	reapplied		546	356	
Maximum $I^2\sqrt{t}$ for fusing	I²√t	t = 0.1 to 10 ms, no voltage reapplied		8450	5510	kA²√s	
Low level value of threshold voltage	V _{F(TO)1}	(16.7 % x π x $I_{F(AV)}$ < I < π x $I_{F(AV)}$), $I_J = I_J$ maximum		0.78	0.84	V	
High level value of threshold voltage	V _{F(TO)2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$		0.87	0.88		
Low level value of forward slope resistance	r _{f1}	(16.7 % x π x $I_{F(AV)}$ < I < π x $I_{F(AV)}$), $I_{J} = I_{J}$ maximum		0.35	0.40	mW	
High level value of forward slope resistance	r _{f2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$		0.31	0.38	IIIVV	
Maximum forward voltage drop	V _{FM}	$I_{pk} = 1500 \text{ A}, T_J = T_J \text{ maximum},$ $t_p = 10 \text{ ms sinusoidal wave}$		1.31	1.44	V	

THERMAL AND MECHANICAL SPECIFICATIONS					
DADAMETER	SYMBOL	TEST CONDITIONS	SD60	UNITS	
PARAMETER	STIVIBUL		04 to 20	22 to 32	UNITS
Maximum junction operating temperature range	TJ		-40 to 180	-40 to 150	°C
Maximum storage temperature range	T _{Stg}		-55 to 200		
Maximum thermal resistance, junction to case	R _{thJC}	DC operation	0.1		K/W
Maximum thermal resistance, case to heatsink	R _{thCS}	Mounting surface, smooth, flat and greased	0.	04	r √ vv
Maximum allowed mounting torque ± 10 %		Not-lubricated threads	5	0	Nm
Approximate weight			45	54	g
Case style		See dimensions (link at the end of datasheet)		B-8	

△R _{thJC} CONDUCTION				
CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	UNITS
180°	0.012	0.008		
120°	0.014	0.014		
90°	0.017	0.019	$T_J = T_J$ maximum	K/W
60°	0.025	0.026		
30°	0.042	0.042		

Note

• The table above shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

www.vishay.com

Vishay Semiconductors

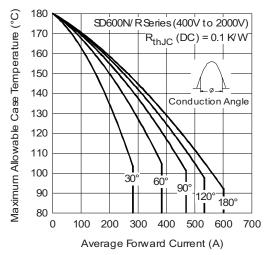


Fig. 1 - Current Ratings Characteristics

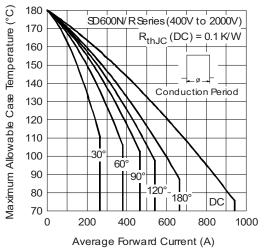


Fig. 2 - Current Ratings Characteristics

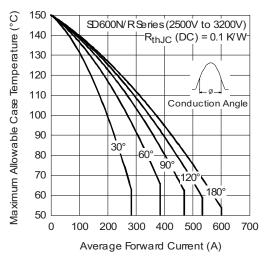


Fig. 3 - Current Ratings Characteristics

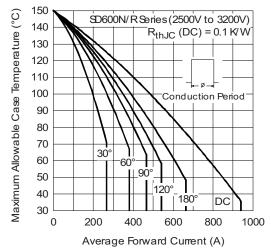


Fig. 4 - Current Ratings Characteristics

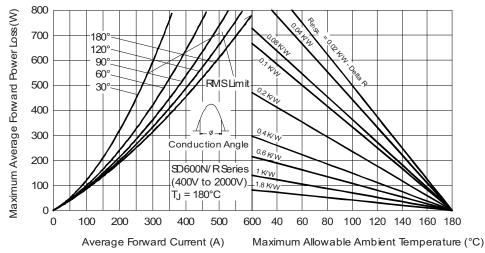


Fig. 5 - Forward Power Loss Characteristics

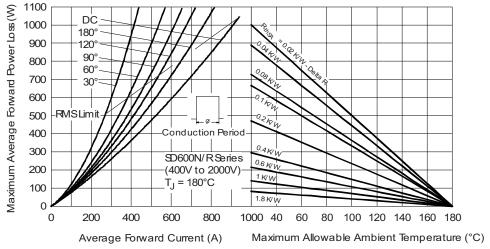


Fig. 6 - Forward Power Loss Characteristics

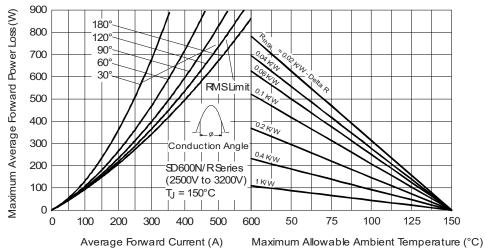


Fig. 7 - Forward Power Loss Characteristics

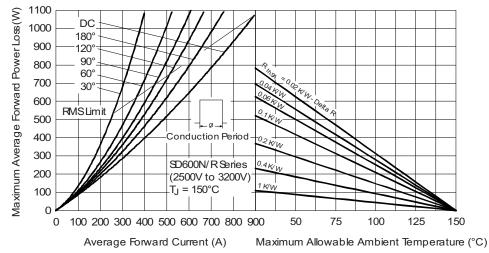


Fig. 8 - Forward Power Loss Characteristics

www.vishay.com Vishay Semiconductors

Number Of Equal Amplitude Half Cycle Current Pulses (N)

Fig. 9 - Maximum Non-Repetitive Surge Current

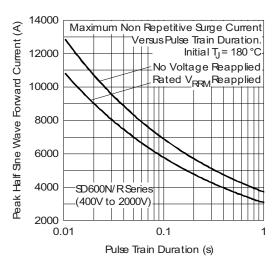


Fig. 10 - Maximum Non-Repetitive Surge Current

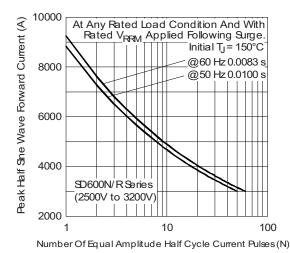


Fig. 11 - Maximum Non-Repetitive Surge Current

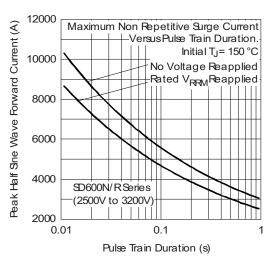


Fig. 12 - Maximum Non-Repetitive Surge Current

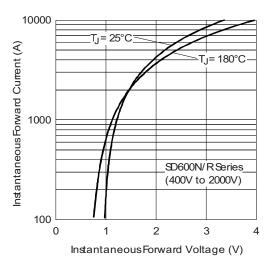


Fig. 13 - Forward Voltage Drop Characteristics

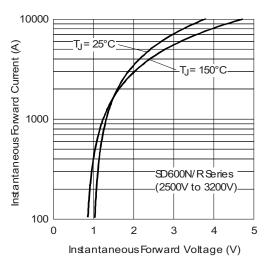


Fig. 14 - Forward Voltage Drop Characteristics

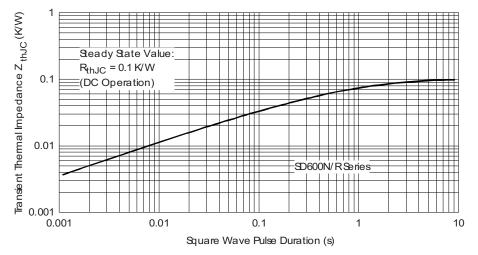
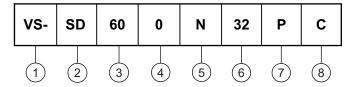
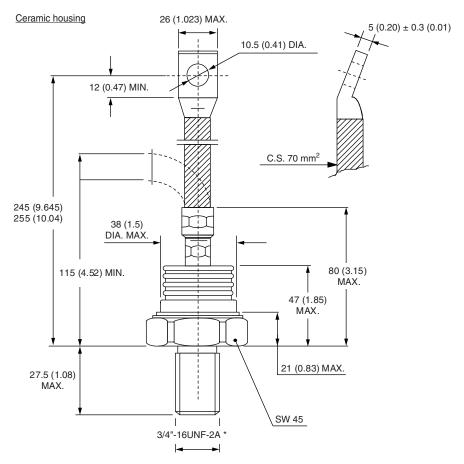



Fig. 15 - Thermal Impedance Z_{thJC} Characteristics

ORDERING INFORMATION TABLE

Device code


- 1 Vishay Semiconductors product
- 2 Diode
- 3 Essential part number
- 4 0 = standard recovery
- 5 • N = stud normal polarity (cathode to stud)
 - R = stud reverse polarity (anode to stud)
- 6 Voltage code x 100 = V_{RRM} (see Voltage Ratings table)
- 7 P = stud base B-8 3/4" 16UNF-2A
- 8 C = ceramic cap

For metric device M24 x 1.5 contact factory

LINKS TO RELATED DOCUMENTS			
Dimensions	www.vishay.com/doc?95303		

B-8

DIMENSIONS in millimeters (inches)

*For metric device: M24 x 1.5 - length 21 (0.83) MAX. contact factory

Document Number: 95303 Revision: 11-Apr-08

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2019 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED