

Solenoid-Diaphragm Dosing Pump MAGDOS LD

Operating Instructions

Read the Operating Instructions! The user is responsible for installation and operation related mistakes!

BA-10241-02-V02

Contents

1	Notes for the Reader	4 4 4 4
2	Safety General warnings Hazards due to non-compliance with the safety instructions Working in a safety-conscious manner Personal protective equipment Personnel qualification	6 7 7 7
3	Intended Use Notes to product warranty Intended purpose Device revision Principles Prohibited dosing media Foreseeable misuse	8 8 8 8
4	Product description 1 Properties 1 Scope of delivery 1 Structure of the dosing pump 1 Function description 1 Rating plate 1	10 10 10 11
5	Technical data 1 Delivery capacity data 1 Operating conditions and limits 1 Electrical specifications 1 Other data 1	2 2 3
6	Dimensions 1 MAGDOS LD with dosing head made of PVC, PP or PVDF	14
7	Installing the Dosing Pump 1 Set up information 1 Installation examples 1	15
8	Hydraulic installations 1 Design of the system 1 System piping 1 Aligning the dosing head 1 Hydraulic connections 1 Connecting a leakage drain 1 Connecting the dosing head venting facility 1 Hydraulic accessories 2	16 17 17 19 19
9	Electrical installation 2 Principles 2 Description of connection sockets 2	27
10	Control	30

	Explanation of the menu icons	30
11	Commissioning the dosing pump	31
	Operating modes External On/Off via Release input	
	Decommissioning the dosing pump	
	Shutting down in an emergency	
	Storage	37
	Transportation	37
	Disposal of old equipment	
12	Maintenance	20
12	Maintenance intervals	
	Tighten up dosing head bolts	
	Change the diaphragm	39
	Clean suction and discharge valves	39
12	Troubleshooting	10
10	Type of fault	
14	Spare parts	
	Diaphragm spare parts kits	
	Dosing head spare parts kits including valves	
	Other spare parts	43
15	Delivery characteristic curves	44
16	EC Declaration of Conformity	15
10		40
17	Declaration of harmlessness	46
18	Warranty application	47
40	Index	40

1 Notes for the Reader

These Operating instructions contain information and behaviour rules for safe and designated operation of the dosing pump MAGDOS LD.

Observe the following principles:

- read the entire operating manual prior to starting-up the device.
- Ensure that everyone who works with or on the dosing pump has read the operating instructions and follows them.
- Keep the operating instructions for the entire service life of the dosing pump.
- Pass on the operating instructions to any subsequent owner of the dosing pump.

1.1 General non-discrimination

In these operating instructions, only the male gender is used where grammar allows gender allocation. The purpose of this is to make the text easy to read. Men and women are always referred to equally. We would like to ask female readers for understanding of this text simplification.

1.2 Explanation of the signal words

Different signal words in combination with warning signs are used in this operating manual. Signal words illustrate the gravity of possible injuries if the risk is ignored:

Signal word	Meaning
DANGER	Refers to imminent danger. Ignoring this sign may lead to death or the most serious injuries.
WARNING	Refers to a potentially hazardous situation. Failure to follow this instruction may lead to death or severe injuries.
CAUTION	Refers to a potentially hazardous situation. Failure to follow this instruction may lead to minor injury or damage to property.
NOTICE	Refers to a danger which, if ignored, may lead to risk to the machine and its function.

Table 1-1: Explanation of the signal words

1.3 Explanation of the warning signs

Warning signs represent the type and source of a danger:

Warning sign	Type of danger
	General danger zone
Â	Danger of electric shock
	Danger of caustic or other burns
	Danger of explosions
	Danger of electromagnetic radiation
	Danger of automatic start up
	Danger of damage to machine or functional influences

Table 1-2: Explanation of the warning signs

1.4 Identification of warnings

Warnings are intended to help you recognise risks and avoid negative consequences.

This is how warnings are identified:

Warning sign	SIGNAL WORD
Description	of danger.

Consequences if ignored.

➡ The arrow signals a safety precaution to be taken to eliminate the danger.

1.5 Identification of instructions for action

This is how pre-conditions for action are identified:

✓ Pre-condition for action which must be met before taking action.

This is how instructions for action are identified:

- → Separate step with no follow-up action.
- 1. First step in a series of steps.
- 2. Second step in a series of steps.
- Result of the above action.

✓ Action completed, aim achieved.

2 Safety

2.1 General warnings

The following warnings are intended to help you to eliminate the dangers that can arise while handling the dosing pump. Risk prevention measures always apply regardless of any specific action.

Safety instructions warning against risks arising from specific activities or situations can be found in the respective sub-chapters.

DANGER

Mortal danger from electric shock!

Wrongly connected or located cables or damaged ones can injure you.

- ⇒ Connect the device only to a SCHUKO socket outlet protected by a ground fault circuit interrupter (GFCI).
- \Rightarrow Replace damaged cables without delay.
- \Rightarrow Do not use extension cables.
- \Rightarrow Do not bury cables.
- \Rightarrow Secure cables to avoid being damaged by other equipment.

DANGER

Danger to life through explosions!

When using dosing pumps without ATEX certification in a potentially explosive area, explosions can occur that result in fatal injuries.

⇒ Never use the MAGDOS LD dosing pump in potentially explosive areas.

WARNING

Caustic burns or other burns through dosing media!

After connecting the mains supply, residual dosing media in the dosing head can spray out.

- \Rightarrow Before connecting the mains supply, connect the dosing lines.
- ⇒ Check that all the screw connections have been tightened correctly and are leak-proof.

WARNING

Caustic burns or other burns through dosing media!

While working on the dosing head, valves and connections, you may come into contact with dosing media.

- \Rightarrow Use sufficient personal protective equipment.
- ⇒ Rinse the dosing pump with a non-hazardous liquid (e.g. water). Ensure that the liquid is compatible with the dosing medium.
- ⇒ Release pressure in hydraulic parts.
- \Rightarrow Never look into open ends of plugged pipelines and valves.

WARNING

Caustic burns or other burns through dosing media!

The materials of the dosing pump and hydraulic parts of the system must be suitable for the dosing medium that is used. Should this not be the case, the dosing media may leak.

- ➡ Make sure that the materials you are using are suitable for the dosing medium.
- ⇒ Make sure that the lubricants, adhesives, sealants, etc. that you use are suitable for the dosing medium.

WARNING

Danger due to electromagnetic radiation for people with pacemakers!

Solenoid diaphragm dosing pumps In operation, solenoid diaphragm dosing pumps emit a stray magnetic field. If you do not keep far enough away, the function of a pacemaker can be negatively affected.

⇒ People with pacemakers must always keep at least 50 cm away from the dosing pump.

CAUTION

Increased risk of accidents due to insufficient qualification of personnel!

Dosing pumps and their accessories may only be installed, operated and maintained by personnel with sufficient qualifications. Insufficient qualification will increase the risk of accidents.

- ⇒ Ensure that all action is taken only by personnel with sufficient and corresponding qualifications.
- \Rightarrow Prevent access to the system for unauthorised persons.

CAUTION

Danger of personal injury and material damage!

Changing dosing media can lead to unpredictable reactions.

⇒ Thoroughly clean the dosing pump and appropriate sections of the plant to avoid chemical reactions.

2.2 Hazards due to non-compliance with the safety instructions

Failure to follow the safety instructions may endanger not only persons, but also the environment and the device.

The specific consequences can be:

- failure of vital functions of the dosing pump and the system,
- failure of required maintenance and repair methods,
- danger for individuals through dangerous dosing media,
- danger to the environment caused by substances leaking from the system.

2.3 Working in a safety-conscious manner

Besides the safety instructions specified in this operating manual, further safety rules apply and must be followed:

- accident prevention regulations
- safety and operating provisions,
- safety provisions for handling dangerous substances (mostly the safety data sheets to dosing media),
- environmental protection provisions,
- applicable standards and legislation.

2.4 Personal protective equipment

Based on the degree of risk posed by the dosing medium and the type of work you are carrying out, you must use corresponding protective equipment. Read the Accident Prevention Regulations and the Safety Data Sheets to the dosing media find out what protective equipment you need.

As a minimum, the following protective equipment is recommended:

Goggles

Protective clothing

ng Protective gloves

Corresponding protective equipment must be used during these tasks:

- commissioning,
- working on the dosing pump while running,
- shutdown,
- maintenance work,
- disposal.

2.5 Personnel qualification

Any personnel who work on the dosing pump must have appropriate special knowledge and skills.

Anybody who works on the dosing pump must meet the conditions below:

- attendance at all the training courses offered by the owner,
- personal suitability for the respective activity,
- sufficient qualification for the respective activity,
- Training in handling of the dosing pump,
- knowledge of safety equipment and the way this equipment functions,
- knowledge of this operating manual, particularly of safety instructions and sections relevant for the activity,
- knowledge of fundamental regulations regarding health and safety and accident prevention.

All persons must generally have the following minimum qualification:

- Training as specialists to carry out work on the dosing pump unsupervised,
- Sufficient training that they can work on the dosing pump under the supervision and guidance of a trained specialist.

These Operating instructions differentiate these user groups:

2.5.1 Specialist staff

Specialist staff are able, thanks to their professional training, knowledge and experience as well as knowledge of the respective provisions, to do the job allocated to them and recognise and/or eliminate any possible dangers by themselves.

2.5.2 Trained persons

Trained persons have been trained by the operator into the tasks they are supposed to perform and into the dangers stemming from improper behaviour.

In the table below you can check what qualifications are the pre-condition for the respective tasks. Only people with appropriate qualifications are allowed to perform these tasks!

Qualification	Activities
Specialist staff	 Assembly Hydraulic installations Electrical installation Maintenance Repairs Commissioning Taking out of operation Disposal Fault rectification
Trained persons	 Storage Transportation Control Fault rectification

3 Intended Use

3.1 Notes to product warranty

Any non-designated use of the product can compromise its function or intended protection. This leads to invalidation of any warranty claims!

Please note that liability is on the side of the user in the following cases:

- The dosing pump is operated in a manner which is not consistent with these operating instructions, particularly the safety and handling instructions and the chapter entitled "Intended Use",
- If people operate the product who are not adequately qualified to carry out their respective activities,
- no original spare parts or accessories of Lutz-Jesco GmbH are used.
- Unauthorised changes are made to the device by the user,
- The user uses different dosing media than those indicated in the order,
- The user does not use dosing media under the conditions agreed with the manufacturer such as modified concentration, density, temperature, contamination, etc.

3.2 Intended purpose

The MAGDOS LD dosing pump is intended for the following purpose: the conveying and dosing of liquids.

3.3 Device revision

This operating manual applies to the following devices:

Device	Month / year of manufacture	Firmware				
MAGDOS LD	09/2013 onwards	1.01 onwards				

Table 3-1: Device revision

3.4 Principles

- Before delivery, the manufacturer inspected the dosing pump and operated it under specific conditions (with a specific dosing medium with a specific density and temperature, with specific pipe dimensions, etc.) For details on the approximate values and the capacity of the dosing pump, refer to the chapter entitled "Delivery characteristic curves" (see page 44).
- Information on the usage and environment (see "Technical data" on page 12) must be observed.
- Any restrictions regarding the viscosity, temperature and density of dosing media must be followed. You must only use dosing media at temperatures above freezing point or below the boiling point of the respective medium.
- The materials of the dosing pump and hydraulic parts of the system must be suitable for the dosing medium that is used. In this connection, note that the resistance of these components can change in dependence on the temperature of the media and the operating pressure.

Information on the suitability of materials combined with different dosing media can be found in the Chemical Resistance List of Lutz-Jesco GmbH. The information in this resistance list is based on information from the material manufacturers and on expertise obtained by Lutz-Jesco from handling the materials. As the durability of the materials depends on many factors,

this list only constitutes initial guidance on selecting material. In all cases, test the equipment with the chemicals you use under operating conditions.

- The dosing pump is not intended for outdoor use unless appropriate protective measures have been taken.
- Avoid leaks of liquids and dust into the casing and avoid direct exposure to sunlight.
- You must never operate dosing pumps in a potentially explosive atmosphere if they do not have corresponding nameplates or an appropriate EC Declaration of Conformity for potentially explosive atmospheres.

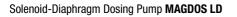
3.5 Prohibited dosing media

The dosing pump must not be used for these media and substances:

- Gaseous media,
- radioactive media,
- solid substances,
- combustible media,
- all other media that are not suitable for delivery using this dosing pump.

3.6 Foreseeable misuse

Below, there is information about the applications of the dosing pump or associated equipment that are not considered to be intended use. This chapter is intended to allow you to detect possible misuse in advance and to avoid it.


Foreseeable misuse is assigned to the individual stages of the product lifetime:

3.6.1 Incorrect assembly

- Unstable or unsuitable bracket
- Dosing pump bolted wrongly or loosely

3.6.2 Incorrect hydraulic installation

- Suction and pressure lines dimensioned incorrectly
- Unsuitable connection of the pipes due to wrong material or unsuitable connections.
- Suction and pressure lines mixed-up
- Damage to threads due to them being tightened too much
- Bending of pipelines
- No free return flow of the pressure relief valve
- Excessive demand due to the pressure differences between the suction and discharge valves

Operating Instructions

- Through-suction at installation without pressure control valves
- Damage due to undamped acceleration mass forces
- Exceeding the admissible pressure on the suction and discharge sides
- Using damaged parts

3.6.3 Incorrect electrical installation

- Connecting the mains voltage without a protective earth
- Unsecured mains or one that does not conform to standards
- Not possible to immediately or easily disconnect the power supply
- Wrong connecting cables for mains voltage
- Dosing pump accessories connected to wrong sockets
- Protective earth removed

3.6.4 Incorrect commissioning

- Commissioning with damaged plant
- Shut-off valves closed at commissioning
- Closed suction or pressure line, e.g. due to blockages
- Personnel was not informed before commissioning
- System was recommissioned after maintenance without all the protective equipment and fixtures, etc. being reconnected.
- Inadequate protective clothing or none at all

3.6.5 Incorrect operation

- Protective equipment not functioning correctly or dismantled
- Modification of the dosing pump without authority
- Ignoring operational disturbances
- Elimination of operational disturbances by personnel without adequate qualifications
- Deposits in the dosing head due to inadequate purging, particularly with suspensions
- Bridging the external fuse
- Operation made more difficult due to inadequate lighting or machines that are difficult to access
- Operation not possible due to dirty or illegible display of the dosing pump
- Delivery of dosing media for which the system is not designed
- Delivery of particulate or contaminated dosing media
- Inadequate protective clothing or none at all

3.6.6 Incorrect maintenance

- Carrying out maintenance during ongoing operation
- Carrying out work that is not described in the operating instructions
- No adequate or regular inspection of correct functioning
- No replacement of damaged parts or cables with inadequate insulation
- No securing against reactivation during maintenance work
- Using cleaning materials that can cause reactions with the dosing media
- Inadequate cleaning of the system
- Unsuitable purging medium
- Unsuitable cleaning materials
- Cleaning materials left in system sections

- Using unsuitable cleaning equipment
- Using the wrong spares or lubricants
- Contaminating the dosing medium with lubricant
- Installing spares without following the instructions in the operating manual
- Blocking venting orifices
- Pulling off sections of the plant
- Contamination at installation without a dirt trap
- Mixing up the valves
- Mixing up the sensor lines
- Not reconnecting all the lines
- Damaging or not installing all the seals
- Not renewing seals
- Not paying attention to safety data sheets
- Inadequate protective clothing or none at all

3.6.7 Incorrect decommissioning

- Not completely removing the dosing medium
- Dismantling lines while the dosing pump is running
- Device not disconnected from the power supply
- Using the wrong dismantling tools
- Inadequate protective clothing or none at all

3.6.8 Incorrect disposal

- Incorrect disposal of dosing media, operating resources and other materials
- No labelling of hazardous substances

4 Product description

4.1 Properties

The MAGDOS LD is a solenoid-diaphragm dosing pump that is used when precise dosing results are required.

They are characterized by the following properties:

- Output range from 0.5 to 15,3 l/h, up to 16 bar,
- Reproducible dosing precision of \pm 2 %,
- Integrated automatic dosing head venting facility (except with stainless steel (1.4571) dosing heads),
- Suitable for highly aggressive or poisonous dosing media,
- Operating modes: Manual mode, Pulse input
- Graphic display: 128 x 64 px, 1.5", monochrome, illuminated,
- Four multifunction keys for operator inputs,
- Floor- and wall-mounting options,
- Connections: M12x1 connector, A-coded

4.2 Scope of delivery

Please compare the delivery note with the scope of delivery. The following items are part of the scope of delivery:

- Dosing pump MAGDOS LD,
- One set each of hose clamping connections for the suction and discharge sides for hoses with diameters of 4/6 mm and 6/9 mm and for hoses with diameters of 4/6 mm, 6/9 mm and 6/12 mm (made of PVC, PP and PVDF),
- 3 covering caps for electrical connections (mounted on the dosing pump),
- 2 conductive rubber bands for electrical contacts (installed in connection sockets 1 and 3)
- Cable with M12x1 plug connector, A-coded, 2 m long, open cable end 4-pin
- Mains cable,
- Operating Manual,
- Inspection report and test certificate (optional),
- Accessory kit (optional).

4.3 Structure of the dosing pump

4.3.1 General Overview

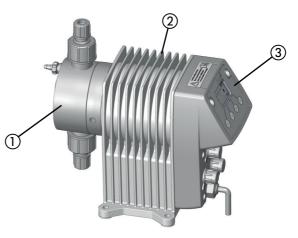


Fig. 4-1: MAGDOS LD dosing pump overview

No.	Description
1	Dosing head
2	Drive unit
3	Control unit

Table 4-1: Designation of components

4.3.2 Dosing head

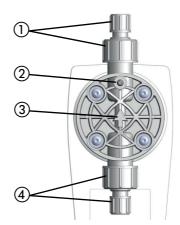


Fig. 4-2: Dosing head

No.	Description						
1	Valve and connection on the discharge side						
2	Integrated dosing head ventilation (plastic version only)						
3	Arrow indicating the direction of throughflow of the dosing medium						
4	Valve and connection on the suction side						

4.3.3 Control elements

Fig. 4-3: Controller of MAGDOS LD dosing pump

No.	Description						
1	Graphic display						
2	Multifunction keys on the contol unit for operator inputs						
3	Connection sockets for external operation or connecting accessories						
4	Mains cable for power supply						

Table 4-2: Designation of components

4.4 Function description

Dosing pumps are positive displacement pumps. They are used if precisely defined delivery of a medium is necessary. A constant volume per stroke or time is delivered.

The system delivers or meters the dosing medium by means of a repeated sequence of suction strokes followed by pressure strokes. This results in a pulsing flow.

If the dosing pump is in the suction stroke phase, the diaphragm is pulled into the rear final position. Due to the resulting vacuum in the dosing head, the discharge valve closes, the suction valve opens and dosing medium flows from the suction line into the dosing head.

If the dosing pump is in the pressure stroke phase, the diaphragm is moved into the front final position. Due to the pressure in the dosing head, the suction valve closes and the dosing medium flows through the discharge valve from the dosing head into the pressurised pipe.

4.5 Rating plate

There is information on the equipment about safety or the product's way of functioning. The information must stay legible for the duration of the service life of the product.

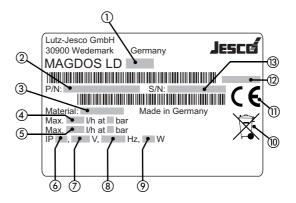


Fig. 4-4: Rating plate MAGDOS LD

No.	Description
1	Product, type, nominal size
2	Part number
3	Type of material of dosing head/ type of material of seals
4	Maximum delivery capacity at average pressure
5	Maximum delivery capacity at maximum pressure
6	Protection classification
7	Power supply
8	Frequency
9	Power consumption
10	WEEE label
11	Label showing conformity with applicable European directives
12	Month / year of manufacture
(13)	Serial number

Table 4-3: Rating plate

5 Technical data

5.1 Delivery capacity data

Please note that some of this data only represents guide values. The actual capacity of a dosing pump depends on various factors. For approximate values of the delivery capacity at different pressures, refer to "Delivery characteristic curves" (see page 44).

Information	Value	MAGDOS LD size						
	Value	05	1	2	4	6	10	15
Delivery conceity at may back processo	l/h	0.36	0.76	1.9	3.4	6.2	9.0	13
Delivery capacity at max. back pressure	ml/stroke	0.05	0.05	0.2	0.31	0.57	0.83	0.86
Max. delivery pressure	bar	16			8	6	3	
Delivery concerts at everyon healy pressure	l/h	0.54	1.1	2.3	3.8	6.8	10	15
Delivery capacity at average back pressure	ml/stroke	0.08	0.08	0.24	0.35	0.63	0.92	1.0
Average delivery pressure	bar		1	8		4	3	1
Max. stroke frequency min ⁻¹		120	250	160		180		250
Suction height for non-gassing media (with a filled suction line)	mWS	5		3			2	

Table 5-1: Output data

5.2 Operating conditions and limits

Information	Value	MAGDOS LD size
Information	value	05 – 15
Maximum ambient temperature	°C	5 – 45 (5 – 40 with PVC parts)*
Relative humidity	%	Max. 90
Max. sound pressure level (depressurised)	dB(A)	68 – 75
Max. sound pressure level (at test pres- sure)	dB(A)	65 – 70
Max. supply pressure	mbar	800
Viscosity limits	mPa s	300** / 1000***
Adjustable dosing range	%	0 – 100

Table 5-2: Operating conditions and limits

* Use of the dosing pump at ambient temperatures below 5 °C must be checked individually. In those cases please contact the manufacturer.

** With a viscosity of ~300 mPa s and above, you must use spring-loaded valves.

*** If the viscosity is above 1000 mPa s, this must be checked individually and the stroke frequency must be between 50 and 100 strokes/min.

5.2.1 Permitted temperature of the medium

Information	Value	MAGDOS LD (all sizes)
Dosing head made of PVC	°C	0 – 35
Dosing head made of PP	°C	0 – 60
Dosing head made of PVDF	°C	0 - 80

Table 5-3: Permitted temperature of the medium

5.3 Electrical specifications

Information		Value	MAGDOS LD size						
mormatio	intermation		05	1	2	4	6	10	15
Power supply			230 V AC ± 10 %, 50/60 Hz or 115 V AC ± 10 %, 50/60 Hz (refer to name plate)						
Power consumption		W	8	13	19		25		22
Max. current consump-	at 115 V AC	۸	1.	.8	2.3		2.5		2.3
tion during dosing stroke	at 230 V AC	A	0.9		1.1	1.4		1.2	

Table 5-4: Electrical specifications

5.4 Other data

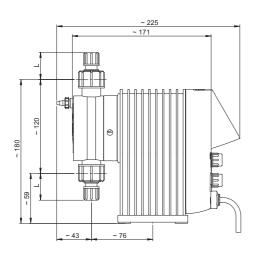

Information	Value	MAGDOS LD size						
information	Value	05	1	2	4	6	10	15
Weight	kg	~3.2						
Diameter of diaphragm	mm	2	24 33 39					
Electrical cable	m	1.8 m (with mains plug)						
Protection class		IP65 (with covering caps on the connections)						
Insulation class		F						
Valve connection		G 5/8 external						
Valve size		DN3 DN4						

Table 5-5: Other data

6 Dimensions

6.1 MAGDOS LD with dosing head made of PVC, PP or PVDF

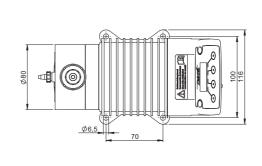
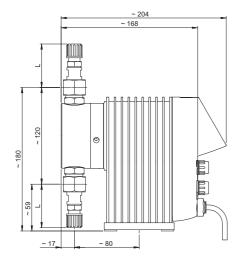



Fig. 6-1: Dimensioned drawing of MAGDOS LD with dosing head made of PVC, PP or PVDF (all dimensions in mm)

Connection	Material	Size	Nominal diameter	L
Hose clip		4/6 mm	DN4	31
	PVC / PP / PVDF	1/4x3/8"	1/4"	34
		6/9 mm	DN6	34
		6/12 mm	DN6	15

6.2 MAGDOS LD with dosing head made of stainless steel (1.4571)

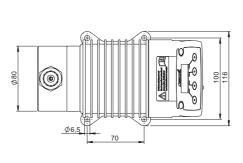


Fig. 6-2: Dimensioned drawing of MAGDOS LD with dosing head made of stainless steel (1.4571) (all dimensions in mm)

Connection	Material	Size	Nominal diameter	L
Hose clip	Stainless steel (1.4571) / PVDF	4/6 mm	DN4	50
Hose clip	Stainless steel (1.4571) / PVDF	6/9 mm	DN6	54

7 Installing the Dosing Pump

DANGER

Mortal danger from electric shock!

Electrically conductive liquid can enter pump housings, cable screw connections and mains connectors.

- ⇒ Make sure that all protective measures comply at least with the requirements of protection class IP65.
- Always set up the dosing pump such that water cannot enter the housing.

A dosing pump that is difficult to access represents a danger due to incorrect operation and faulty maintenance.

 \Rightarrow Install the dosing pump such that it is accessible at all times.

7.1 Set up information

When installing, follow the basic principles below:

- The valves must be vertical: Discharge valve at top, suction valve at bottom. in this connection, pay attention to the arrow on the dosing head. The dosing head must be aligned such that the arrow points vertically upwards.
- You should install the dosing pump at a convenient height for operation.
- It must not be installed under the ceiling.
- The frame of foundation for fixing the dosing pump must not be subjected to jolts. The pump must be vibration-free and stable.
- There must be enough free space in the area of the dosing head and the suction and discharge valves for these parts to be easily dismantled if required. The entire space requirement for installation and maintenance is approximately 1 m².
- The distance from the sides of the dosing pump to the wall or other dosing pumps or equipment must be at least 3 cm. There must be a guaranteed flow of circulating air.
- The maximum ambient temperature must be complied with, see "Operating conditions and limits" on page 12. If necessary, radiated heat from surrounding equipment must be screened.
- Avoid exposure to direct sunlight.
- The dosing pump is not intended for use out of doors unless appropriate protective measures have been taken to prevent dust and water from entering the housing.
- For the dimensions of the fastening holes, refer to "Dimensions" (see page 14).
- The tightening torque for the fastening bolts is 1.5 2 Nm.

7.2 Installation examples

7.2.1 Installation on a wall console



Fig. 7-1: Installation on a wall console

To reduce the structure-borne noise, the dosing pump is bolted to the wall bracket using rubber elements. The materials necessary for this are included with the wall bracket.

7.2.2 Installation on the wall

Fig. 7-2: Installation on the wall

The dosing pump can be mounted to the floor or directly to the wall without the need for additional elements. Turn the dosing head appropriately to ensure the flow direction of the medium through the dosing head.

8 Hydraulic installations

In this chapter, you will find information about the hydraulic parts of a system that you should install or that can install additionally. In many cases, you must install hydraulic accessories to be able to use all the functions that the MAGDOS LD dosing pump offers, to guarantee functional safety or to achieve a high level of dosing precision.

WARNING

Caustic burns or other burns through dosing media!

The materials of the dosing pump and hydraulic parts of the system must be suitable for the dosing medium that is used. Should this not be the case, the dosing media may leak. Depending on the type and hazardousness of the dosing medium, this can result in injury.

- ⇒ Make sure that the materials you are using are suitable for the dosing medium.
- ➡ Make sure that the lubricants, adhesives, sealants, etc. that you use are suitable for the dosing medium.

WARNING

Caustic burns or other burns through dosing media!

If there is a diaphragm rupture, the dosing medium can escape in an uncontrolled way. Depending on the type and hazardousness of the dosing medium, this can result in injury.

 \Rightarrow Install a leakage drain.

WARNING

Caustic burns or other burns through dosing media!

The dosing pump can generate a pressure that is many times the rated one. A blocked pressure line can lead to dosing medium escaping. Depending on the type and hazardousness of the dosing medium, this can result in injury.

⇒ Install pressure relief valves.

CAUTION

Danger of personal injury and material damage!

High peak pressures can lead to piping vibrating and cause them to snap. This can result in injury due to uncontrollable piping or escaping dosing media.

 \Rightarrow Install pulsation dampeners.

NOTICE

Damage to drives due to overloading

The pressure conditions between the suction and discharge sides must be balanced; otherwise, overloading can result. This can lead to uncontrolled dosing processes, damage to the plant pipework and to the dosing pump.

 \Rightarrow Ensure that the pressure on the discharge side is at least 1 bar greater than on the suction side.

NOTICE

Locking of threads (seized threads)

Stainless steel and plastic parts (particularly those made of PVC) that are bolted together in a detachable connection (e.g. the dosing head and the valves) can lock. This makes them difficult to release.

⇒ Before bolting, grease the corresponding parts with a lubricant, e.g. PTFE spray). Ensure that the lubricant is compatible with the dosing medium.

8.1 Design of the system

- The dosing pump's technical data (see "Technical data" on page 12) must be taken into account and the plant's layout must be set up appropriately (e.g. pressure loss when rating the lines with regard to their nominal diameter and length).
- You must design the entire plant and its integrated dosing pump such that escaping dosing medium due to the failure of wearing parts such as the diaphragm, or to burst hoses does not lead to permanent damage to parts of the system or the premises.
- The leakage opening of the dosing head must be visible so that you can detect a diaphragm rupture. It must be possible for the outflow from the leakage drain to be on a free downwards gradient.
- If you use hazardous dosing media, the installation must be designed such that no disproportionately high consequential damages arise due to dosing media escaping.
- To avoid dosing errors after the end of the process, the dosing pump must be locked hydraulically.
- To allow you to easily inspect the pressure conditions in the system, you should provide connections for pressure gauges close to the suction and discharge valves.

8.2 System piping

- The system piping must not exert any force on the connections and valves of the dosing pump.
- This means that steel piping should be connected to the dosing pump by means of flexible pipe sections.
- The nominal diameters of the pipework and the installed fittings should be rated the same as or greater than the nominal diameters of the dosing pump's suction and discharge valves.
- The suction line should be kept as short as possible.
- You should avoid intertwined hoses.
- Avoid loops, since air bubbles can collect.

8.3 Aligning the dosing head

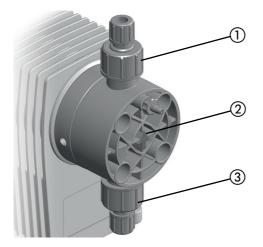


Fig. 8-1: Aligning the dosing head

When connecting the dosing lines to the dosing pump, you must observe the direction of through-flow (see arrow (2)). The dosing head must be aligned vertically. The alignment can be changed in 90° intervals.

The suction valve ③ must always point downwards. Accordingly, arrow ② and pressure valve ① always point upwards. This is irrespective of the positioning of the dosing head to the drive.

8.4 Hydraulic connections

8.4.1 Connecting hose clips

Choose the hose connection according to the condition of the hose (material, inner diameter, wall thickness) in order to ensure maximum pressure resistance.

8.4.1.1 Sizes 4/6 and 6/9

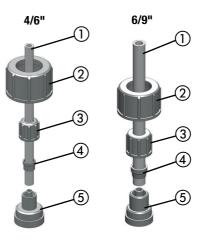


Fig. 8-2: Hose clips 4/6 and 6/9 (internal and external diameters in mm)

Perform the following working steps:

- 1. Cut the hose (1) to length neatly and at an exact right angle.
- 2. Place a gasket that is suitable for the dosing medium between the connection (5) and the valve.
- 3. Screw the connecting piece (5) to the dosing pump's valve using the union nut (2).
- 4. Thread the union nut (3) and the clamping ring (4) onto the hose.
- Plug the hose ① all the way in to the grommet of connection piece
 ⑤.
- Push the clamping ring ④ onto the grommet of connection piece
 ⑤ and screw it to the union nut ③.
- 7. Carry out the same procedure with the connection to the dosing pump's other valve.
- Hose clip connected.

8.4.1.2 Size 6/12

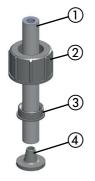


Fig. 8-3: Hose clip 6/12 (internal and external diameter in mm)

Size 6/12 hose clips only have a union nut. It clamps the hose onto the grommet of the connection piece and at the same time fastens on the dosing pump's valve.

Perform the following working steps:

- 1. Cut the hose ① to length neatly and at an exact right angle.
- 2. Place a gasket that is suitable for the dosing medium between the connection ④ and the valve.
- 3. Push the union nut (2) and the cutting ring (3) over the hose (1).
- Press the end of the hose ① onto the grommet of connection piece
 ④. You can do this more easily by moistening the end of the hose on the inside or applying some lubricant to the grommet in the cone area. You should push at least two thirds of the hose onto the grommet of the connection piece.
- 5. Push the cutting ring ③ over the hose ① into the cone area on the grommet of connection piece ④.
- 6. Screw the union nut (2) onto the valve of the dosing pump.
- Hose clip connected.

8.4.2 Making the glue-in connection

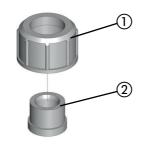


Fig. 8-4: Glue-in connection

Perform the following working steps:

- 1. Cut the PVC tube to length.
- 2. Push the union nut ① onto the tube.
- 3. Stick the bonded coupling sleeve ② to the tube (follow the instructions of the adhesive manufacturer).
- 4. Place a gasket that is suitable for the dosing medium between the connection and the valve of the dosing pump.
- 5. Screw the union nut ① onto the valve of the dosing pump.
- Glue-in connection made.

8.4.3 Making the cemented connection

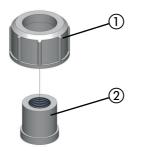


Fig. 8-5: Cemented connection

Perform the following working steps:

- 1. Cut the tube to length.
- 2. Cut the thread (2) onto the end of the tube.
- 3. Push the union nut (1) onto the tube.
- 4. Seal the thread ②. When choosing your sealing material, take into account its resistance to material, temperature and pressure.
- 5. Place a gasket that is suitable for the dosing medium between the connection and the valve of the dosing pump.
- 6. Screw the union nut ① onto the valve of the dosing pump.

Cemented connection made.

Under normal conditions, you only need to screw the hydraulic connections finger-tight. However, due to the material settling, the pre-tension of the screw connection can slacken. This means that you must re-tighten the screw connection before carrying out commissioning.

П

8.5 Connecting a leakage drain

Dosing pumps by Lutz-Jesco GmbH are produced to the highest quality standards and have a long service life. However, some parts are subject to operational wear. This is the case particularly with the diaphragms that are continuously subjected to forces during the suction and discharge strokes and to the effects of the dosing medium.

If a diaphragm ruptures, the dosing medium starts to leak. This leakage is drained via the leakage opening. On the flange of the dosing head, there are three openings for this purpose. Depending on the alignment of the dosing pump, the leakage is drained via the downward opening.

Fig. 8-6: Openings of the leakage drain

Damage to drives due to effervescent media

If a hose is connected to the leakage drain and it is routed back into the dosing tank, effervescent media can enter the drive and damage it.

- \Rightarrow Collect the leakage in a collecting pan.
- ⇒ As an alternative, you can route the leakage back to the dosing tank using a funnel. You should install the funnel at an adequate distance from the leakage opening.

8.6 Connecting the dosing head venting facility

The MAGDOS LD dosing heads have an integrated dosing head venting facility (except for dosing heads made of stainless steel).

For the procedure when venting, refer to "Venting the dosing pump" on page 32.

Fig. 8-7: Dosing head venting facility with hose connection

Perform the following working steps:

- 1. Connect a 4/6 hose to the dosing head venting facility.
- 2. Route the other end of the hose into the dosing tank or a collecting tank.
- Dosing head venting facility connected.

8.7 Hydraulic accessories

The following chapter is intended to give you an overview of installation options.

Please note that these operating instructions are no substitute for the instructions supplied with the accessories in each case. The corresponding documentation supplied with the product applies to safety information and provides exact instructions on assembly.

8.7.1 Injection nozzle

If the pressure line enters a main line, it is advisable to install an injection nozzle.

Injection nozzles have three main functions:

- Dosing the medium into a main line,
- Preventing flowback into the pressure line through a non-return valve.

Notes on assembly:

- Double-ball injection nozzles must be installed into the main line vertically from the bottom. You can install hose and spring-loaded injection nozzles any way you like.
- With dosing media that tend to crystallize, it is advisable to carry out installation into the main line from the bottom. This prevents air bubbles from being trapped.
- Many dosing media tend to contaminate the injection nozzles, which can lead to blockages. In cases like this, it is advisable to install an injection nozzle that is easy to block off and dismantle.

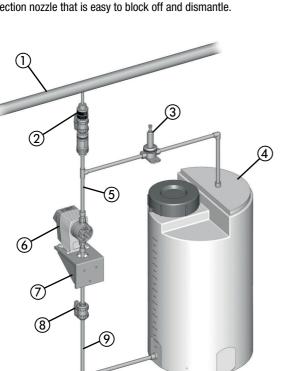


Fig. 8-8: Installation with an injection nozzle

No.	Description
1	Main line
2	Injection nozzle with shut-off valve
3	Pressure relief valve
4	Dosing tank
5	Pressure line
6	Dosing pump MAGDOS LD
Ø	Wall bracket
8	Shutoff valve
9	Suction line

Table 8-1: Designation of components

8.7.2 Contact Water Meter

The contact-type water meter measures the throughflow in a pipe and sends a pulse to the dosing pump, which then starts dosing. This means that ideal proportional dosing is also possible with large throughflow fluctuations.

The Contact Water Meter connects to connection socket 2 (see "Connection socket 2" on page 28).

Further information on operation can be found in section "Operation with contact-type water meter" on page 35.



Fig. 8-9: MAGDOS LD installation on contact-type water meter

8.7.3 Pressure relief valve

Pressure relief valves have an important safety function for protecting the dosing pump and the associated pipes and fittings. The dosing pump can generate a pressure that is many times the rated one. A blocked pressure line can lead to dosing medium escaping.

An improperly high pressure can occur if:

- the shut-off valves are closed even though the dosing pump is running,
- pipes block.

At an appropriate pressure, a pressure relief valve opens a bypass line and protects the system in this way from damage caused by over-pressure.

Notes on assembly:

- The line for returning dosing medium from the pressure relief valve must be routed to the dosing tank or to a collecting pan.
- The pressure in the dosing tank must not be too high so that it is possible to accommodate the returned dosing medium.
- As an alternative, the system can return dosing medium into the suction line in front of the dosing pump. In this case, there must not be a non-return valve or a foot valve in the suction line.
- You should install the pressure relief valve as close as possible to the dosing head.

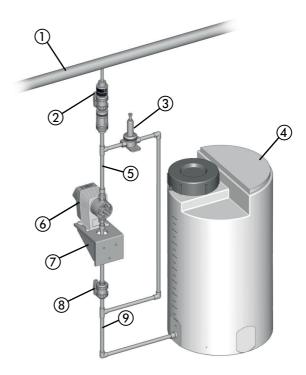


Fig. 8-10: Installation with pressure relief valve - returning to the suction line

Fig. 8-11: Installation with pressure relief valve - returning to the dosing tank

Description
Main line
Injection nozzle with shut-off valve
Pressure relief valve
Dosing tank
Pressure line
Dosing pumpMAGDOS LD
Wall bracket
Shutoff valve
Suction line

Table 8-2: Designation of components

8.7.4 Back-pressure valve

Back-pressure valves are necessary if:

- there are considerably fluctuating system pressures,
- the pressure on the suction side is higher than on the discharge side or if you intend to carry out dosing into depressurized lines.

In cases like this, if you do not use a back-pressure valve, imprecise dosing results will occur or overloading will result. The back-pressure valve solves these problems by generating a defined, constant back-pressure.

In some circumstances, a back-pressure valve is unnecessary if you use a hose injection nozzle and if the back-pressure that it generates is adequate.

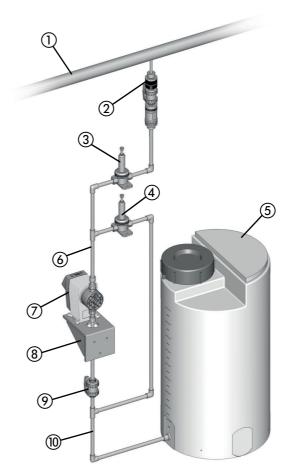


Fig. 8-12: Installation with a pressure control valve

No.	Description
1	Main line
2	Injection nozzle with shut-off valve
3	Back-pressure valve
4	Pressure relief valve
5	Dosing tank

Table 8-3: Designation of components

No.	Description
6	Pressure line
7	Dosing pump MAGDOS LD
8	Wall bracket
9	Shutoff valve
10	Suction line

Table 8-3: Designation of components

8.7.5 Pulsation dampener

Pulsation dampeners have the following functions:

- Damping pulsating delivery flows for processes that require lowpulsation dosing,
- Reducing the throughflow resistance with long pipelines.

When installed on the suction side:

- Damping of acceleration mass forces and with this reduction of wear on the dosing pump.
- Preventing cavitation (pull-off of the liquid column) due to too high acceleration.

However, pulsation dampeners also have important safety functions, since they prevent pressure peaks from arising that lead to piping vibrating and cause them to snap.

This problem can occur:

- with the high amplitudes of the vibrations,
- when using long pipes (the severity of the pulsation increases with the length of the pipe),
- when using rigid piping instead of elastic hoses.

Notes on assembly:

- You should carry out assembly in the direct vicinity of the location where you want to damp the pressure peaks (directly in front of the suction valve or directly behind the discharge valve).
- Pulsation dampeners should be installed with throttle valves or pressure control valves installed directly behind them. By setting the valves appropriately, you can further-optimise damping of the pulsations.
- To prevent unnecessary pipe friction losses, you should lay the connecting line straight and in accordance with the rated width of the pulsation dampener.
- You must separately fasten relatively large pulsation dampeners and ones with hose connections.
- Pipelines must not transfer any mechanical tensions onto the pulsation dampener.

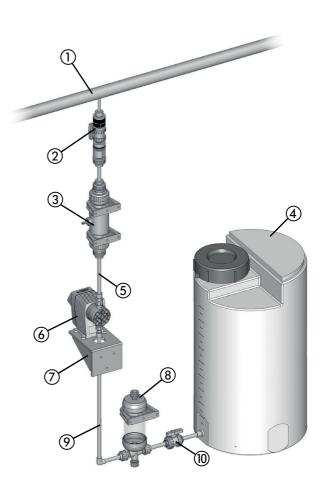


Fig. 8-13: Installation with a pulsation dampener

No.	Description
1	Main line
2	Injection nozzle with shut-off valve
3	Pulsation dampener
4	Dosing tank
5	Pressure line
6	Dosing pump MAGDOS LD
Ø	Wall bracket
8	Suction pulsation dampener
9	Suction line
10	Shutoff valve

Table 8-4: Designation of components

Solenoid-Diaphragm Dosing Pump MAGDOS LD

8.7.6 Priming aid

Priming aids are particularly advisable:

- in the case of dosing pumps with small volumetric displacements per stroke or with low stroke length settings,
- with high suction heights,
- with highly dense dosing media,
- at priming for the first time due to dry valves and air in the suction line and the dosing head,
- in dosing systems with frequent downtimes.

Further advantages resulting from priming aids:

- preventing cavitation in the suction line,
- gas removal,
- optical dosing control with small amounts,
- smoothing of the suction flow.

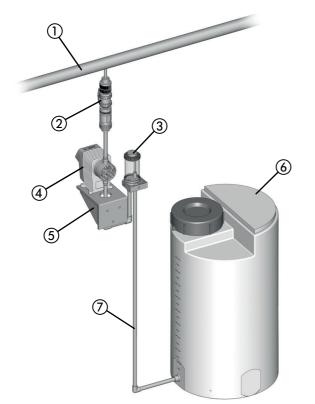


Fig. 8-14: Installation with a priming aid

No.	Description
1	Main line
2	Injection nozzle with shut-off valve
3	Priming aid
4	Dosing pump MAGDOS LD
5	Wall bracket

Table 8-5: Designation of components

No.	Description
6	Dosing tank
7	Suction line

Table 8-5: Designation of components

8.7.7 Level monitoring

Level monitoring of suction-side feeding of the dosing medium to prevent the tank being sucked dry and to ensure that it can be topped up again in good time.

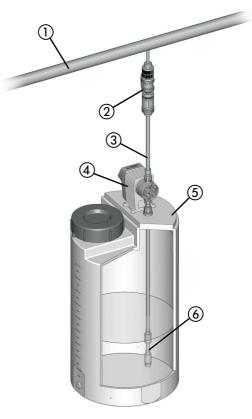


Fig. 8-15: Installation with a level monitoring system

No.	Description
1	Main line
2	Injection nozzle with shut-off valve
3	Pressure line
4	Dosing pump MAGDOS LD
5	Dosing tank
6	Suction line with level monitoring

Table 8-6: Designation of components

8.7.8 Dosing of suspensions

When dosing suspensions, the dosing head must be rinsed regularly to prevent depositing. To do this, you install a feed line for the rinsing medium (water) in the suction side installation.

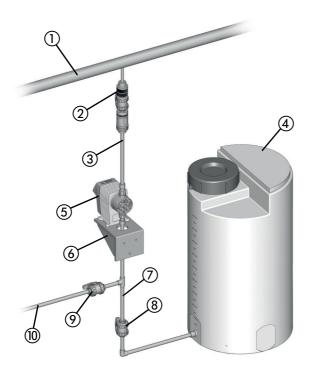


Fig. 8-16: Dosing of suspensions

No.	Description
1	Main line
2	Injection nozzle with shut-off valve
3	Pressure line
4	Dosing tank
5	Dosing pump MAGDOS LD
6	Wall bracket
0	Suction line
8	Shutoff valve
9	Shutoff valve
10	Line for rinsing the dosing head
Table 8-7:	Designation of components

8.7.9 Suction pressure regulator

A suction pressure regulator may be necessary if the suction-side installation of the system demonstrates a varying suction pressure or supply pressure:

- Dosing pumps that are installed above dosing tanks deliver less as the tank empties, since the suction head increases.
- Dosing pumps that are installed below dosing tanks deliver less as the tank empties, since the positive delivery pressure reduces.

Further problems that can occur:

- Greater wear on the dosing pump, e.g. diaphragm rupture due to the effects of heavy forces with particularly high tanks and high-density dosing media.
- Idling of the dosing tank in the case of a diaphragm rupture or pipe breakage.
- Impermissibly high forces in the pump transmission that occur when dosing pumps receive the dosing medium directly from the pressure line.
- Reduced performance or destruction of fittings due to cavitation with long suction lines.

Installing a suction pressure regulator is a remedy for the problems above. The suction pressure regulator is opened by the dosing pump's suction pressure. This ensures that no dosing medium can flow if the dosing pump is not running or no vacuum can be generated following a pipe fracture.

Notes on assembly:

When using a large suction pressure regulator, you should provide a pulsation dampener on the suction side.

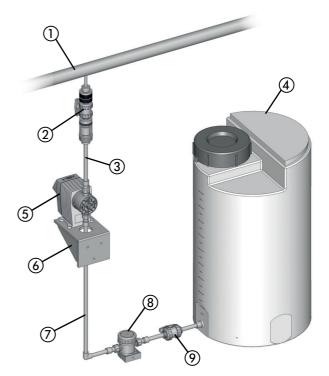


Fig. 8-17: Installation with a suction pressure regulator

Solenoid-Diaphragm Dosing Pump MAGDOS LD

No.	Description
1	Main line
2	Injection nozzle with shut-off valve
3	Pressure line
4	Dosing tank
(5)	Dosing pump MAGDOS LD
6	Wall bracket
7	Suction line
8	Suction pressure regulator
9	Shutoff valve

Table 8-8: Designation of components

9 Electrical installation

DANGER

Mortal danger from electric shock!

If there is an electrical accident, you must disconnect the dosing pump from the mains as quickly as possible.

⇒ Install an emergency stop switch or integrate the dosing pump into the plant safety concept.

CAUTION

Danger of automatic start up!

The dosing pump does not have an ON/OFF switch and may start to pump as soon as it is connected to the mains supply. This means that dosing medium can escape. Depending on the type and hazardousness of the dosing medium, this can result in damage to property or to injury.

⇒ Install an emergency stop switch or integrate the dosing pump into the plant safety concept.

NOTICE

Damage due to incorrect mains voltage

The dosing pump can be damaged if you connect it to the wrong mains voltage.

⇒ Observe the information on the mains supply that is given on the nameplate.

NOTICE

Insufficient electromagnetic compatibility

When you connect the dosing pump to a socket without an attached protective earth, it is not possible to guarantee the interference radiation and interference immunity according to EMC regulations.

⇒ Only connect the dosing pump to sockets with an attached protective earth.

9.1 Principles

- According to the model the dosing pump either has a 230 V AC or a 115 V AC power supply unit.
- The electrical connection comply with local regulations.
- The dosing pump must be plugged into a grounded power outlet.
- To avoid dosing errors at the end of the process, the dosing pump must be locked electrically.
- The dosing pump must not be operated by switching the mains voltage on or off.
- Signal cables must not be laid parallel to high-voltage current lines or mains cables. You must route supply and signal lines in separate channels. An angle of 90° is required at line crossings.

NOTICE

Compromised functions due to open contacts

MAGDOS LD is delivered with two conductive rubber bands installed in connection sockets 1 and 3. These conduct electricity and ensure that the contacts in the connection sockets remain closed when no cables are connected. If the conductive rubber bands in connection sockets 1 and 3 are missing or not correctly installed and there are no cables connected to the sockets, it is not possible to start the dosing pump.

- ⇒ Insert the conductive rubber bands in connection sockets 1 and 3 if there are no cables connected to the connection sockets.
- ⇒ Ensure that the conductive rubber bands are installed on the correct contacts (see instructions in following section).

Fig. 9-1: Removing the conductive rubber bands

9.2 Description of connection sockets

Fig. 9-2: Connection sockets 1 - 3

Inputs	Connection socket
Release input	1
Pulse input	2
Level input	3

Table 9-1: Inputs of the control unit

9.2.1 Connection socket 1

9.2.1.1 Release input

Using the Release input, it is possible to start or stop the dosing pump externally.

- Potential-free contact
- Connection M12x1 cable with plug connector, A-coded
- Assignment of pin 3, 4

Pin	M12x1 (A-coded)	Assignments	Connection	Cable co	lour*
1	-	-	-	Brown	BN
2	-	-	-	White	WH
3		Ground (GND)	-03	Blue	BU
4	3 0 0	External On/Off	-04	Black	BK

Table 9-2: Connection socket 1

* Applies to cable colours of cables from of Lutz-Jesco GmbH. No liability is accepted for cables from other manufacturers.

For setting the *External On/Off* function, see "External On/Off via Release input" on page 36.

Removing the conductive rubber band

Fig. 9-3: Conductive rubber band in connection socket 1

Remove the conductive rubber band before inserting the cable in the connection socket.

After the cable has been removed, the conductive rubber band must be reinserted in the connection socket. Insert it between pins 1, 2 and 3, 4 as shown in Fig. 9-3.

9.2.2 Connection socket 2

9.2.2.1 Pulse input

The pulse input makes it possible to control the delivery capacity by means of pulses. The system regulates the delivery capacity by means of the dosing pump's stroke frequency and number of strokes in dependence on the number of pulses and the pulse spacing.

- Provided potential-free contact
- For potential-free NO contact, e.g. a contact-type water meter
- Pulse length min. 4 ms
- Connection M12x1 cable with plug connector, A-coded
- Assignment of pin 1, 3

For information on setting the *External* operating mode, see page 33.

Pin	M12x1 (A-coded)	Assignments	Connection	Cable co	lour*
1		Pulses		Brown	BN
2	3 0 0 1	-		White	WH
3	9	Ground (GND)		Blue	BU
4	-	-	-	Black	BK

Table 9-3: Connection socket 2

* Applies to cable colours of cables from of Lutz-Jesco GmbH. No liability is accepted for cables from other manufacturers.

9.2.3.1 Level input

Connection for level monitoring of a dosing tank (e.g. a suction line with a float switch).

- Alert and main alarm
- Potential-free contact
- NO contact
- Connection M12x1 cable with plug connector, A-coded
- Assignment of pin 1, 2, 3

For more details on installing the level monitoring system, see page 24.

A matching connection cable with A-coded plug connector is integrated in the suction lines / level monitoring systems of Lutz-Jesco GmbH. An adapter is required if using older suction lines with a 3.5 mm jack plug. You can find this adapter and additional cables in the Lutz-Jesco GmbH price list.

Pin	M12x1 (A-coded)	Assignments	Connection	Cable co	lour*
1	2	Low level alert	01	Brown	BN
2	3 0 0 1	Main alarm		White	WH
3)	Ground (GND)	<u> </u>	Blue	BU
4	-	-	-	Black	BK

Table 9-4: Connection socket 3

* Applies to cable colours of cables from of Lutz-Jesco GmbH. No liability is accepted for cables from other manufacturers.

Removing the conductive rubber band

Fig. 9-4: Conductive rubber band in connection socket 1

Remove the conductive rubber band before inserting the cable in the connection socket.

After the cable has been removed, the conductive rubber band must be reinserted in the connection socket. Insert it between pins 1, 2 and 3, 4 as shown in Fig. 9-4.

10 Control

10.1 Operator controls of the control unit

Fig. 10-1: Operator controls of the control unit

No.	Explanation	
1	Graphic display	
2	Int/Ext key	
3	- key	
4	④ + key	
5	Start/Stop key	

Table 10-1: Operator controls of the control unit

You operate the dosing pump MAGDOS LD using the four multifunction keys below the display. The system shows the respective functions of the keys at the bottom of the display.

The + and - selection keys have a repeat function, i.e. if you keep them pressed down, the system automatically repeats the key function.

The display brightness reduces 45 seconds after your last input.

The dosing pump does not have an ON/OFF switch. After being disconnected from the power supply, the dosing pump starts in the operating mode and configuration that you selected last.

10.2 Explanation of the menu icons

10.2.1 Level monitoring

Symbol	Meaning
Ĩ	Dosing tank full
IJ	Dosing tank at minimum (alert)
U	Dosing tank empty (main alarm)

Table 10-2: Explanation of the menu icons – Level monitoring

10.2.2 Operating modes

Symbol	Meaning	
ψ	Intern (manual mode)	
\Rightarrow	Extern (operation via pulse input)	
Table 10-3: Exp	able 10-3: Explanation of the menu icons – Operating modes	

10.2.3 Release input

Symbol	Meaning	
ŕ	Contact closed (dosing pump starting)	
Υ,	Contact open (dosing pump stopping)	

Table 10-4: Explanation of the menu icons – Release input

11 Operation

WARNING

Caustic burns or other burns through dosing media!

After connecting the mains supply, residual dosing media in the dosing head can spray out.

- \Rightarrow Before connecting the mains supply, connect the dosing lines.
- ⇒ Check that all the screw connections have been tightened correctly and are leak-proof.

WARNING

Caustic burns or other burns through dosing media!

While working on the dosing head, valves and connections, you may come into contact with dosing media.

- ⇒ Use sufficient personal protective equipment.
- ⇒ Rinse the dosing pump with a non-hazardous liquid (e.g. water). Ensure that the liquid is compatible with the dosing medium.
- ⇒ Release pressure in hydraulic parts.
- \Rightarrow Never look into open ends of plugged pipelines and valves.

CAUTION

Danger of personal injury and material damage!

Dosing medium can escape if you loosen connections on the dosing head, e.g. for venting, during operation.

- \Rightarrow Follow the safety data sheet of the dosing medium.
- \Rightarrow Clean the dosing pump if dosing medium escapes.
- \Rightarrow Dispose of the dosing medium correctly.

CAUTION

Increased risk of accidents due to insufficient qualification of personnel!

Dosing pumps and their accessories may only be installed, operated and maintained by personnel with sufficient qualifications. Insufficient qualification will increase the risk of accidents.

- ⇒ Ensure that all action is taken only by personnel with sufficient and corresponding qualifications.
- \Rightarrow Prevent access to the system for unauthorised persons.

<u>N</u>

CAUTION

Danger of personal injury and material damage!

Changing dosing media can lead to unpredictable reactions.

⇒ Thoroughly clean the dosing pump and appropriate sections of the plant to avoid chemical reactions.

CAUTION

Danger of automatic start up!

The dosing pump does not have an ON/OFF switch and may start to pump as soon as it is connected to the mains supply. This means that dosing medium can escape. Depending on the type and hazardousness of the dosing medium, this can result in injury.

- ⇒ Stop the dosing pump before disconnecting it from the mains supply.
- ⇒ Ensure that the dosing pump has been installed correctly before connecting it to the mains supply.

11.1 Commissioning the dosing pump

Precondition for action:

- The dosing pump has been assembled and installed in accordance with "Installing the Dosing Pump" (see page 15), "Hydraulic installations" (see page 16) and "Electrical installation" (see page 27).
- All the mechanical fastenings have been inspected to ensure adequate load-bearing capacity.
- The dosing head screws have been tightened with the correct torque (see "Tighten up dosing head bolts" on page 39).
- All the hydraulic sections have been inspected to ensure they are adequately leak-proof and that the through flow direction is correct.
- Personnel have read all the operating instructions and understood them completely.

For initial commissioning, it is advisable to use water as the dosing medium to check that the system is leak-proof and that the dosing pump is functioning correctly. Check first whether undesirable reactions could occur between the actual dosing medium and the water.

ĭ

Solenoid-Diaphragm Dosing Pump MAGDOS LD

Perform the following working steps:

- 1. Open the shut-off valves on the suction and discharge sides if present.
- 2. Plug in the dosing pump's mains plug to the power supply.
- 3. Vent the dosing pump, (see "Venting the dosing pump" on page 32).
- 4. Select an operating mode and start the dosing pump in accordance with the instructions in the chapter entitled "Operating modes" (see page 32).
- The dosing pump primes. if it does not prime enough, use a priming aid, (see "Priming aid" on page 24).

At initial commissioning, it is advisable to prime the pump without back pressure. For this purpose, we recommend installing a relief valve on the discharge side of the dosing pump.

✓ The dosing pump is commissioned.

11.1.1 Venting the dosing pump

Fig. 11-1: Dosing head venting facility with vent screw

Precondition for action:

The dosing head venting facility connected has been connected in accordance with the chapter entitled "Connecting the dosing head venting facility" (see page 19).

Perform the following working steps:

- 1. Select the operating mode Intern.
- 2. Press Stop.
- 3. Keep + depressed until 100% delivery capacity is achieved.
- 4. Open the vent screw by one complete turn (looking onto the dosing head, anti-clockwise).
- 5. Press Start.
- The dosing pump starts delivery at the highest stroke frequency.
- 6. Press Stop as soon as there is a continuous throughflow from the dosing head venting facility with no air bubbles.
- The dosing pump stops delivery.
- 7. Close the vent screw.

The dosing pump is vented.

If you are using effervescent media, allow them to flow out continuously. Open the vent screw such that about one drop per 1 - 3 strokes escapes.

11.2 Operating modes

The MAGDOS LD dosing pump offers the following operating modes:

- Intern Manual setting of the delivery capacity,
- Extern Controlling the stroke frequency and number of strokes in dependence on the number of pulses and the pulse spacing,

11.2.1 Internal operation

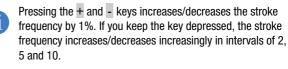
CAUTION

Danger of automatic start up!

If the dosing pump is in internal operation with a specified stroke frequency, it retains the stroke frequency even after you disconnect if from the mains and then reconnect it. This means that dosing medium can escape. Depending on the type and hazardousness of the dosing medium, this can result in injury.

- ⇒ Stop the dosing pump before disconnecting it from the mains supply.
- ⇒ Ensure that the dosing pump has been installed correctly before connecting it to the mains supply.

11.2.1.1 Selecting the operating mode


- → Press the Int key to select the operating mode.
- The dosing pump displays the start screen of the *Intern* operating mode with the symbol ^(h).

] 0%
曹		۲		Ĩ
Ext	-		+	Start

Fig. 11-2: Start screen internal operation

11.2.1.2 Starting the dosing pump

 Use the + and - keys to set the desired stroke frequency. Adjustment range: 0 – 100%

- 2. Press Start.
 - **Dosing pump has started.**

11.2.1.3 Stopping the dosing pump

- ➔ Press Stop.
- The system displays the "Stop" signal and Stop changes to Start.
- Dosing pump has stopped.

ĭ

11.2.2 External operation

The stroke frequency and consequently the delivery capacity of the dosing pump MAGDOS LD in the *Extern* operating mode is determined by the quantity and interval of the incoming pulses in connection with the set transmission factor.

11.2.2.1 Selecting the operating mode

- Press the Ext key to select the operating mode.
- The dosing pump displays the start screen of the *Extern* operating mode with the symbol \Rightarrow .

	1	00%	
		ť	Ĩ
Int	-	+	Start

Fig. 11-3: Start screen external operation

11.2.2.2 Setting the transmission and reduction

The transmission and reduction factors can be set in 1% intervals of 1% to 1000%. A set value of 100% means that the dosing pump executes one dosing stroke per incoming pulse signal. For values above 100%, the dosing pump executes more dosing strokes per pulse signal accordingly.

For values below 100%, the dosing pump executes less than one dosing stroke per pulse signal, meaning that several pulse signals are required before a dosing stroke is executed.

The number of pulse signals required for a dosing stroke is displayed on the dosing pump display for values below 100%.



Fig. 11-4: Number of pulse signals required (here: 2)

Number of pulses	Setting	Dosing strokes
4	25%	1
2	50%	1
1	100%	1
2	100%	2
4	125%	5
1	1000%	10

Table 11-1: Examples for transmission / reduction of pulse signals

In cases of sequences of sequential pulses, it must be noted that the number of dosing strokes corresponding to the pulses does not always follow the pulses immediately in certain settings. This is due to the fact that only entire dosing strokes are executed, i.e., not half or quarter dosing strokes. Depending on the transmission or reduction factor and the number of pulses, however, there is a possibility of uneven results with "pending" pulse signals. In theses cases, the required number of dosing strokes is only achieved after a number of pulse cycles.

Examples:

The dosing pump receives pulses with a reduction factor of 30%. For the first stroke, it requires 4 pulses in this setting (4 x 30% = 120%), as 3 pulses (3 x 30% = 90%) are insufficient for one dosing stroke (= 100%). However, the second dosing stroke is executed after just 3 more pulses, as the stroke buffer of the dosing pump still has 20% pending from the first 4 pulses (120% - 100% = 20%) and this is added to the 3 pulses (90% + 20% = 110%). The third dosing stroke also only requires 3 additional pulses (90% + 10% = 100%). A further 4 pulses are then required for the fourth dosing stroke.

If pulses are transferred to the dosing pump with a transmission factor of 125%, a dosing stroke is executed for each of the first 3 pulses. With the 4th pulse, it executes 2 dosing strokes (3x 25% pending from the first 3 pulses + 125% = 200%).

The dosing pump has a dynamic stroke buffer which includes the interval between the pulses in the calculation and adjusts the distribution of the dosing strokes accordingly.

11.2.2.3 Calculating the transmission factor

The dosing pump MAGDOS LD has a defined stroke volume per dosing stroke. If a certain dosing quantity is required per pulse, the corresponding transmission factor can be calculated for the external operating mode.

You can find a simple means of performing the necessary calculations on the Lutz-Jesco GmbH homepage. To do so, click on the following link or enter it in your browser: http://www.lutz-jesco.com/en/online-help

If you have no Internet connection, you can also perform the calculation yourself.

The following parameters are required for this:

- required dosing quantity in ml/pulse
- delivery capacity of the dosing pump in ml/stroke

The delivery capacity of the dosing pump can be found in the technical data and the delivery characteristic curves (see "Delivery capacity data" on page 12 and "Delivery characteristic curves" on page 44). Intermediate values can be interpolated.

Calculate the value using the following formula:

desired delivery capacity per pulse \times 100% delivery capacity of the dosing pump per stroke

Solenoid-Diaphragm Dosing Pump MAGDOS LD

Example: With a MAGDOS LD 6, 1 ml should be proportionally dosed per pulse. The stroke volume at 4 bar is 0.63 ml.

The factor to be set is calculated as follows:

```
\frac{1 \text{ ml/pulse} \times 100}{0.63 \text{ ml/stroke}} = 159\%
```

In this example, the pump would execute 159 strokes for 100 incoming pulses.

A

Note that the stroke frequency of the dosing pump is restricted. For the MAGDOS LD 6, the max. stroke frequency is approx. 180 strokes/min. Any additional incoming strokes are not processed. For this example, this means that the dosing pump can process a maximum of 113 pulses/min (180/1.59).

11.2.2.4 Starting the dosing pump

Precondition for action:

- ✓ The dosing pump has been connected in accordance with the chapter entitled "Pulse input" (see page 28).
- 1. Press Start.
- 2. Supply pulses to the pulse input of the dosing pump.
- ✓ Dosing pump has started.

11.2.2.5 Stopping the dosing pump

- → Stop the incoming pulses of press Stop.
- Dosing pump has stopped.

11.2.2.6 Operation with contact-type water meter

The dosing pump MAGDOS LD is prepared for operation with a contact-type water meter. The contact sequence of the water meter and the size of the dosing pump must be matched to each other (calibrated).

You can find a simple means of performing the necessary calculations on the Lutz-Jesco GmbH homepage. To do so, click on the following link or enter it in your browser: http://www.lutz-jesco.com/en/online-help

If you have no Internet connection, you can also perform the calculation yourself.

Preselection of the dosing pump size

You can use the following diagram to determine the necessary size of the dosing pump depending on the intended dosing quantity and the existing or selected pulse sequence of the contact-type water meter. Comparison with the dosing pump's technical data with regard to the operating pressure is also necessary (see "Technical data" on page 12).

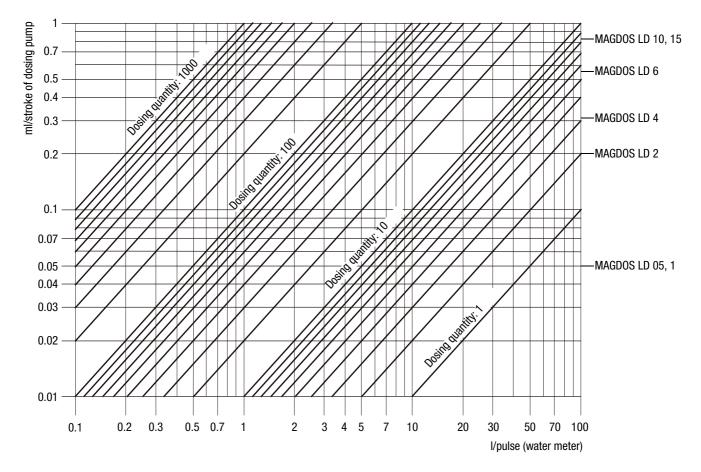


Fig. 11-5: Preselection of the dosing pump

The first calculation phase is used to determine the transmission factor which is set in the display of the MAGDOS LD.

The following parameters are required for this:

- Dosing quantity per cubic metre of water in ml/m³
- Pulse sequence of water meter in I/Imp
- Delivery capacity per stroke of the dosing pump in ml/stroke

Calculate the factor using the following formula:

 $\frac{\text{desired dosing quantity} \times \text{pulse sequence of contact-type water meter}}{\text{delivery capacity of the dosing pump per stroke} \times 10}$

Example:

1000 ml of a dosing medium should be dosed per m^3 of water in a water line at 4 bar. The contact-type water meter has an pulse sequence of 1 l/pulse. The selection table (see page 35) can be used to select a MAGDOS LD 6 with 0.63 ml/stroke at 4 bar. A MAGDOS LD 10 would also come into consideration as it doses 0.88 ml/stroke. A MAGDOS LD 15 is not suitable as it can only work at 3 bar.

The factor to be set is calculated as follows:

 $\frac{1000 \times 1}{0,63 \times 10} = 159\%$

Calculating the necessary stroke frequency

The second calculation phase checks the size of the contact-type water meter and the maximum stroke frequency of the MAGDOS LD by comparing the required stroke frequency and the maximum stroke frequency of the dosing pump.

The following additional parameter is required for this:

The nominal size of the contact-type water meter in cubic metres per hour [m³/h]

Calculate the necessary stroke frequency using the following formula:

dosing quantity in ml/m³ × size of contact-type water meter in m³/h delivery capacity of the dosing pump per stroke in ml/Hub

Example:

For the dosing specified above, a contact-type water meter with the nominal size of m^3/h should be used.

The necessary stroke frequency is calculated with:

 $\frac{1000 \text{ ml/m}^3 \times 5 \text{ m}^3/h}{0,63 \text{ ml/stroke}} = 7937 \text{ strokes/hour}$

This value is compared with the maximum possible stroke frequency of the dosing pump. The MAGDOS LD 6 achieves a maximum of 10800 strokes/hour.

Result:

The required stroke frequency must be smaller than the maximum stroke frequency of the dosing pump, which is the case here.

If the maximum stroke frequency is higher, the dosing pump cannot continue up to the water meter's maximum flow rate. In this case, the following versions are possible:

- Use of a higher dosing pump model, e.g., MAGDOS LD 10 instead of MAGDOS LD 6
- Reduction of the dosing quantity via higher concentration of the dosing medium
- Increase of the pulse sequence of the contact-type water meter, e.g., 0.5 l/pulse instead of 1 l/pulse

11.3 External On/Off via Release input

Regardless of the selected operating mode, you can start or stop the MAGDOS LD dosing pump by means of the closed switching contact on the Release input.

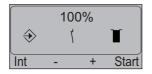


Fig. 11-6: Start screen of external operation with symbol for closed contact in centre

For the significance of the menu symbols, see "Explanation of the menu icons" on page 30.

11.3.1 Starting the dosing pump

- → Close the switching contact on the Release input.
- Dosing pump has started.

11.3.2 Stopping the dosing pump

- → Open the switching contact on the Release input.
- Dosing pump has stopped.

11.4 Decommissioning the dosing pump

Perform the following working steps:

- 1. Stop the dosing pump in accordance with the selected operating mode.
- 2. Unplug the dosing pump's mains plug from the power supply.
- 3. Disconnect all electrical connections.
- 4. Depressurize all the hydraulic parts in the system.
- 5. Unplug all the hydraulic connections on the dosing pump.
- 6. Empty the dosing head.
- 7. Remove any residual dosing medium from the dosing head by flushing the system with a washing agent. Ensure that the washing agent is compatible with the dosing medium.

Dosing pump is decommissioned.

11.5 Shutting down in an emergency

- In an emergency, you must immediately disconnect the dosing pump from the mains supply or activate the Emergency Stop switch installed in the system.
- Depending on the type of incident, you must depressurized the hydraulic connections or locked to prevent dosing medium from escaping.
- You must follow the safety data sheet of the dosing medium.

11.6 Storage

Storing the dosing pump correctly extends its service life. You should avoid negative influences like extreme temperatures, high humidity, dust, chemicals, etc.

Ensure ideal storage conditions where possible:

- the storage place must be cold, dry, dust-free and generously ventilated,
- Temperatures between + 2 °C and + 40 °C (with PP and PVDF dosing heads, between + 2 °C and + 60 °C),
- Relative humidity must not exceed 90 %.

11.7 Transportation

Perform the following working steps:

- The unit should be thoroughly cleaned. Any dangerous dosing media must be additionally neutralised and decontaminated.
- All accessories should be dismantled.
- All openings should be closed, so that no foreign objects can get into the system.
- The dosing pump must be suitably packed, preferably in the original packing, for transportation.

Should the unit be sent back to the manufacturer, please follow chapters "Declaration of harmlessness" (see page 46) and "Warranty application" (see page 47).

11.8 Disposal of old equipment

- The waste unit must be thoroughly cleaned. Any dangerous dosing media must be additionally neutralised and decontaminated.
- Any residual dosing media must be removed in a professional manner.
- The dosing pump must be disposed of in accordance with applicable local laws and regulations. The device does not belong to household waste!
- As the disposal regulations may differ from country to country in the European Union, please consult your supplier if necessary.

12 Maintenance

Dosing pumps by Lutz-Jesco GmbH are produced to the highest quality standards and have a long service life. Nevertheless, some of their parts are subject to wear due to operation (e.g. diaphragms, valve seats, valve balls). This means that regular visual inspections are necessary to ensure a long operating life. Regular maintenance will protect the dosing pump from operation interruptions.

DANGER

Mortal danger from electric shock!

Live parts can inflict fatal injuries.

- ⇒ Before carrying out any maintenance work, always disconnect the dosing pump from the power supply.
- \Rightarrow Secure the dosing pump from accidental power-up.

WARNING

Caustic burns or other burns through dosing media!

While working on the dosing head, valves and connections, you may come into contact with dosing media.

- ⇒ Use sufficient personal protective equipment.
- ⇒ Rinse the dosing pump with a medium (e.g. water) which does not pose any risk.
- ⇒ Release pressure in hydraulic parts.
- \Rightarrow Never look into open ends of plugged pipelines and valves.

WARNING

Caustic burns or other burns through dosing media!

After connecting the mains supply, residual dosing media in the dosing head can spray out.

- \Rightarrow Before connecting the mains supply, connect the dosing lines.
- ⇒ Check that all the screw connections have been tightened correctly and are leak-proof.

CAUTION

Danger of personal injury and material damage!

The dosing pump can generate a pressure that is many times the rated one. The dosing medium can escape in the case of material failure or wear on the dosing head, the connection pipe or the seals that are used.

 \Rightarrow Carry out maintenance work at the recommended intervals.

CAUTION

Increased risk of accidents due to insufficient qualification of personnel!

Dosing pumps and their accessories may only be installed, operated and maintained by personnel with sufficient qualifications. Insufficient qualification will increase the risk of accidents.

- ⇒ Ensure that all action is taken only by personnel with sufficient and corresponding qualifications.
- \Rightarrow Prevent access to the system for unauthorised persons.

12.1 Maintenance intervals

This table gives you an overview of maintenance work and the intervals at which you must carry it out. The next few chapters contain instructions for carrying out this work.

Maintenance work to be carried out	Frequency	
Check that piping is seated firmly	Regularly	
Check that suction and discharge valves are seated firmly	Regularly	
Clean suction and discharge valves	Regularly	
Check that electrical connections are not damaged	Regularly	
Tighten up dosing head bolts	 Regularly Before initial commissioning After each diaphragm change 	
Check diaphragm for leakage due to rupture	Regularly	
Check that the installed accesso- ries are functioning correctly	Regularly	
Check the dosing pump for unusual noises during operation, unusual temperatures or smells	Regularly	
Replace parts that are subject to wear (diaphragms, valves, seals, etc.)	When unacceptable levels of wear are detected	
Rinse out and clean the dosing pump	 Before changing diaphragms Before taking out of service for a long period of time After feeding aggressive, sticky, crystallising or contaminated liquids 	

Table 12-1: Maintenance information and maintenance intervals

12.2 Tighten up dosing head bolts

→ Tighten the dosing head bolts in diagonally opposite sequence with a torque wrench.

The necessary torque is 180 Ncm.

12.3 Change the diaphragm

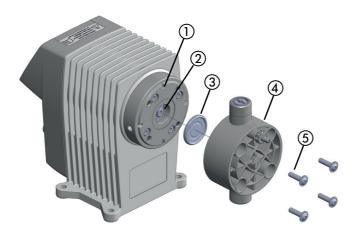


Fig. 12-1: Exploded view of the diaphragm and dosing head

12.3.1 Remove the old diaphragm

Precondition for action:

- \checkmark You have disconnected the dosing pump from the mains supply.
- You have depressurised the hydraulic sections of the plant.
- \checkmark You have rinsed the dosing pump using a safe medium (e.g. water).

Perform the following working steps:

- 1. Screw out the four screws (5) on the dosing head using a suitable tool (SW 3 Allen key) and take off the dosing head (4).
- 2. Use pliers to bend the edge of the diaphragm (3) slightly upwards and screw it out counter-clockwise.

12.3.2 Install a new diaphragm

Precondition for action:

- \checkmark You have thoroughly cleaned the diaphragm rod (2) and the diaphragm flange (1) so that the new diaphragm is not affected by dosing medium residues.
- You have slightly greased the diaphragm thread (3) (e.g. using Molykote Longterm W2).
- 1. Screw the diaphragm manually (3) in the clockwise direction until it safely contacts into the diaphragm rod.
- Bring the dosing head into position and insert the screws. First 2. tighten the screws finger-tight. After this, tighten the bolts on the diagonal, e.g. top left - bottom right - top right - bottom left.

NOTICE

Damage to the dosing head/diaphragm leaks

If you tighten the screws too much, this can lead to the dosing head being damaged. However, not tightening the screws enough leads to the diaphragm being leaky and correct functioning being affected.

- \Rightarrow Tighten the screws to a torque of 180 Ncm.
- Diaphragm change finished.

It may be necessary to recalibrate the dosing pump after replacing the diaphragm or other spare parts on it. For more information, refer to page 32.

12.4 Clean suction and discharge valves

Contaminated valves affect the dosing preceision and this means that you should clean the valves on a regular basis.

With dosing heads made of plastic, when replacing a valve you must replace the complete dosing head (see "Spare parts" on page 43).

Operating Instructions

13 Troubleshooting

See below for information about how to rectify faults on the device or the system. If you cannot eliminate the fault, please consult with the manufacturer on further measures or return the dosing pump for repair.

13.1 Type of fault

13.1.1 Dosing pump not delivering or output too low

Possible cause	Remedy		
Wrong type of dosing pump selected	Check the dosing pump's tech- nical data and if necessary select a type with a higher delivery capacity.		
Valve leaking or blocked	→ Clean the valve and vent the dosing pump.		
	➔ Tighten the screw connections.		
Valve installed incorrectly	→ Reassemble the valve. Ensure that the valve balls are located above the valve seats.		
Valve damaged (e.g. valve balls)	 Remove the damaged parts or install a new valve. 		
Suction line is leaking	 Seal the leak locations or replace the parts. 		
Suction line is blocked (e.g. screen in foot valve)	→ Clean the suction line		
Shut-off valves closed	 Open the shut-off valves Inspect the dosing pump for possible damage. 		
Suction head too high	→ Set the dosing pump to feed or reduce the suction head.		
	\rightarrow Install a priming aid.		
Viscosity too high	 Possibly reduce the concentra- tion of the dosing medium or increase the temperature. 		
	➔ Install spring-loaded valves.		
	➔ Increase the pipe diameter.		
Current supply interrupted	→ Reconnect the current supply		
The dosing pump's electrical data does not match that of the mains supply	→ Check the electrical installation.		

Possible cause	Remedy		
System back pressure too	+	Clean blocked injection nozzle.	
high (measured at discharge connection of dosing pump)	→	Install pulsation dampeners to reduce pressure peaks if pipes are too long.	
	→	Check safety valves.	
Conductive rubber bands not inserted in connection sockets or not inserted correctly	>	Insert conductive rubber bands correctly	

Table 13-1: Type of fault: Dosing pump not delivering or output too low

13.1.2 Dosing pump does not prime

Possible cause	Remedy		
Valve leaking or blocked	>	Clean the valve and vent the dosing pump.	
	→	Tighten the screw connections.	
Valve installed incorrectly	➔ Reassemble the valve. Ensure that the valve balls are located above the valve seats.		
Valve damaged (e.g. valve balls)	>	Remove the damaged parts or install a new valve.	
Suction line is leaking	>	Seal the leak locations or replace the parts.	
Suction line is blocked (e.g. screen in foot valve)	>	Clean the suction line	
Shut-off valves closed	•	Open the shut-off valves Inspect the dosing pump for possible damage.	
Suction head too high	 Set the dosing pump to feed or reduce the suction head. 		
	→	Install a priming aid.	
Viscosity too high	>	Possibly reduce the concentra- tion of the dosing medium or increase the temperature.	
	→	Install spring-loaded valves.	
	→	Increase the pipe diameter.	
Current supply interrupted	>	Reconnect the current supply	

Table 13-1: Type of fault: Dosing pump not delivering or output too low

Table 13-2: Type of fault: Dosing pump does not prime

Possible cause	Remedy	
Dry the valves	•	Dampen the dosing head and the valves
	→	Vent the dosing head.
Air in the suction line with simultaneous pressure on the discharge valve	•	Vent the dosing head or the lines.

Table 13-2: Type of fault: Dosing pump does not prime

13.1.3 Delivery rate varies

Possible cause	Remedy		
Valve leaking or blocked	 Clean the valve and vent the dosing pump. 		
	→	Tighten the screw connections.	
Valve damaged (e.g. valve balls)	•	Remove the damaged parts or install a new valve.	
Suction line is leaking	→	Seal the leak locations or replace the parts.	
Suction line is blocked (e.g. screen in foot valve)	→ Clean the suction line		
Viscosity too high	 Possibly reduce the concentra- tion of the dosing medium or increase the temperature. 		
	→	Install spring-loaded valves.	
	→	Increase the pipe diameter.	
The dosing pump's electrical data does not match that of the mains supply	→	Check the electrical installation.	
Suction side pressure too high (pump siphoning)	 Install a pressure control valve in the pressure line. 		
Pressure peaks due to accel- eration with long suction lines	➔ Install a suction pressure regulator.		
Imprecise dosing due to changeable positive and negative suction heads.	➔ Install a suction pressure regulator.		
System back pressure too	>	Clean blocked injection nozzle.	
high (measured at discharge connection of dosing pump)	→	Install pulsation dampeners to reduce pressure peaks if pipes are too long.	
	→	Check safety valves.	

13.1.4 No stroke movement observed

Possible cause	Remedy	
Diaphragm return spring broken.	➔ Contact the manufacturer.	
Current supply interrupted	→ Reconnect the current supply	
The dosing pump's electrical data does not match that of the mains supply	➔ Check the electrical installation.	
System back pressure too	➔ Clean blocked injection nozzle.	
high (measured at discharge connection of dosing pump)	 Install pulsation dampeners to reduce pressure peaks if pipes are too long. 	
	→ Check safety valves.	

Table 13-4: Type of fault: No stroke movement observed

13.1.5 Dosing pump delivery rate too high

Possible cause	Remedy	
Suction side pressure too high (pump siphoning)	 Install a pressure control valve in the pressure line. 	
Pressure peaks due to accel- eration with long suction lines	 Install a suction pressure regulator. 	

Table 13-5: Type of fault: Dosing pump delivery rate too high

13.1.6 Diaphragm is torn or tears too often

Possible cause	Remedy		
Shut-off valves closed	 Open the shut-off valves Inspect the dosing pump for possible damage. 		
Pressure peaks due to accel- eration with long suction lines	 Install a suction pressure regulator. 		
The materials are not suitable for the dosing medium being used	 Check the resistance of the materials. 		
Diaphragm not screwed up to the end stop on the diaphragm rod	 Screw a new diaphragm up to the end stop. 		

Table 13-6: Type of fault: Diaphragm is torn or tears too often

Table 13-3: Type of fault: Delivery rate varies

Solenoid-Diaphragm Dosing Pump MAGDOS LD

Possible cause	Remedy	
System back pressure too		Clean blocked injection nozzle.
high (measured at discharge connection of dosing pump)	→	Install pulsation dampeners to reduce pressure peaks if pipes are too long.
	>	Check safety valves.
Media sediment in dosing head	>	Clean the dosing head.

Table 13-6: Type of fault: Diaphragm is torn or tears too often

13.1.7 Loud noises on the dosing pump

Possible cause	Remedy	
The drive magnet's stop damper is worn-out	→ Contact the manufacturer.	

Table 13-7: Type of fault: Loud noises on the dosing pump

14 Spare parts

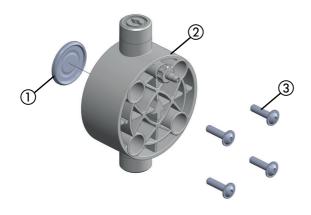


Fig. 14-1: Spare parts kits

Required sets for a complete service:

- 1 diaphragm spare parts kit,
- 1 dosing head spare parts set including valves.

14.1 Diaphragm spare parts kits

Diaphragm spare parts set containing:

- 1 diaphragm ①,
- 1 set of dosing head screws ③.

Diaphragm kit	Туре	Part No.
	LD 05, LD 1	39121
	LD 2, LD 4	39122
	LD 6, LD 10, LD 15	39123

14.2 Dosing head spare parts kits including valves

Spare parts set: dosing head including screws consisting of:

- Dosing head ②,
- Valves,
- 1 set of dosing head screws ③.

PVC	Туре	Part No.
Glass/PVDF/FPM (ball/seat/seals)	LD 05, LD 1	38981
	LD 2, LD 4	38982
	LD 6, LD 10, LD 15	38983

РР	Туре	Part No.
Glass/PVDF/FPM (ball/seat/seals)	LD 05, LD 1	38978
	LD 2, LD 4	38979
	LD 6, LD 10, LD 15	38980

PVDF	Туре	Part No.
PTFE/PVDF/FPM (ball/seat/seals)	LD 05, LD 1	38984
	LD 2, LD 4	38985
	LD 6, LD 10, LD 15	38986

Further sets in numerous material combinations can be found in Lutz-Jesco's current price list.

14.3 Other spare parts

Description	Part No.
Set of conductive rubber bands (2 pcs)	40036
Set of covering caps M12x1 (3 pcs)	40319

15 Delivery characteristic curves

This Chapter is intended to give you an idea of the delivery capacity that the dosing pump can achieve at specific back pressures. These delivery capacities were determined on the manufacturer's test stands. They apply at 20° C (68° F) for water, at 100% stroke frequency. The delivery capacity depends on the medium (density and viscosity) and temperature. Since these conditions vary at every installation location, you should gauge the capacity of the dosing pump in litres on site.

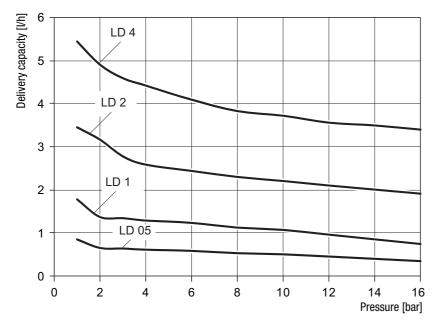


Fig. 15-1: Delivery characteristic curves MAGDOS LD 05 - 4

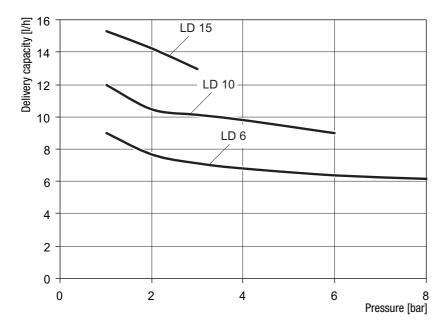


Fig. 15-2: Delivery characteristic curves MAGDOS LD 6 – 15

16 EC Declaration of Conformity

Operating Instructions

(DE) EG-Konformitätserklärung

Der Unterzeichnete Lutz-Jesco GmbH, Am Bostelberge 19, 30900 Wedemark, bestätigt, dass die nachfolgend bezeichneten Geräte in der von uns in Verkehr gebrachten Ausführung die Anforderungen der harmonisierten EU-Richtlinien, EU-Sicherheitstandards und produktspezifischen Standards erfüllen. Bei einer nicht mit uns abgestimmten Änderung der Geräte verliert diese Erklärung ihre Gültigkeit.

(EN) EC Declaration of Conformity

The undersigned Lutz-Jesco GmbH, Am Bostelberge 19, 30900 Wedemark. hereby certifies that, when leaving our factory, the units indicated below are in accordance with the harmonised EC guidelines, EC standards of safety and product specific standards. This certificate becomes void if the units are modified without our approval.

(FR) Certificat de conformité aux directives européennes

Le constructeur, soussigné: Lutz-Jesco GmbH, Am Bostelberge 19, 30900 Wedemark, déclare qu'à la sortie de ses usines le matériel neuf désigné ci-dessous était conforme aux prescriptions des directives européennes énoncées ci-après et conforme aux règles de sécurité et autres règles qui lui sont applicables dans le cadre de l'Union européenne. Toute modification portée sur ce produit sans l'accord express de Jesco supprime la validité de ce certificat.

(ES) Declaración de conformidad de la UE

El que subscribe Lutz-Jesco GmbH. Am Bostelberge 19. 30900 Wedemark, declara que la presente mercancía, objeto de la presente declaración, cumple con todas las normas de la UE, en lo que a normas técnicas, de homologación y de seguridad se refiere, En caso de realizar cualquier modificación en la presente mercancía sin nuestra previa autorización, esta declaración pierde su validez.

(NL) EU-overeenstemmingsverklaring

Ondergetekende Lutz-Jesco GmbH, Am Bostelberge 19, 30900 Wedemark, bevestigt, dat het volgende genoemde apparaat in de door ons in de handel gebrachte uitvoering voldoet aan de eis van, en in overeenstemming is met de EU-richtlijnen, de EU-veiligheidsstandaard en de voor het product specifieke standaard. Bij een niet met ons afgestemde verandering aan het apparaat verliest deze verklaring haar geldigheid

(HU) EG (EK)– Egyezőségi nyilatkozat

A Lutz-Jesco GmbH, Am Bostelberge 19, 30900 Wedemark ezúton kijelenti, hogy a szóban forgó termék annak tervezése és szerkezeti módja, valamint forgalomba hozott kivitele alapján a vonatkozó alapvető biztonság technikai és egészségügyi követelményeknek és az alábbi felsorolt EG - irányelveknek minden szempontból megfelel. A terméken engedélyünk nélkül végrehajtott módosítások következtében jelen nyilatkozat érvényét veszíti.

(PT) Certificado de conformidade da UE

Os abaixo mencionados Lutz-Jesco GmbH, Am Bostelberge 19, 30900 Wedemark, por este meio certificam que ao sair da fábrica o aparelho abaixo mencionado está de acordo com as directrizes harmonizadas da UE, padrões de segurança e de produtos específicos. Este certificado ficará nulo se a unidade for modificada sem a nossa aprovação.

Bezeichnung des Gerätes:	Magnet-Dosierpumpe	
Description of the unit:	Solenoid Metering Pump	
Désignation du matériel:	Pompe doseuse électromagnétique	
Descripción de la mercancía:	Bomba Dosificadora tipo Solenoide	
Omschrijving van het apparaat:	Magneetdoseerpomp	
A termék megnevezése:	Màgneses adagolószivattyúk	
Designação do aparelho:	Bomba doseadora de membrana mag	nética
Tur / Turne	EU-Richtlinie / EU directives	Harmonisierte Normen / harmonized standards
Тур / Туре	EU-RICHUME / EU directives	Harmonisierte Normen / harmonized standards
MAGDOS LD 05 – 15	2006/42/EG	DIN EN 809:2011-01

Lucian Gogolin Leiter Dosiertechnik Head of Dosing Department Lutz-Jesco, Wedemark, 31,08,2013

2006/95/EG

DIN EN ISO 12100:2011-03

Dokumentationsbevollmächtigter: Authorized person for documentation: Lucian Gogolin Adresse: siehe Adresse des Herstellers Address: see manufacturer's address

Lutz-Jesco GmbH Am Bostelberge 19 30900 Wedemark Germany

17 Declaration of harmlessness

Please copy the declaration, stick it to the outside of the packaging and return it with the device.

Declaration of Harmlessness				
Please fill out a separate form for each appliance!				
We forward the following device for repairs:				
Device and device type:	Part-no.:			
Order No.:	Date of delive	ry:		
Reason for repair:				
Dosing medium				
Description:	Irritating:	🗌 Yes	🗌 No	
Properties:	Corrosive:	🗌 Yes	🔲 No	
We hereby certify, that the product has been cleaned thoroughly inside and outside before returning, that it is free from hazardous material (i.e. chemical, biological, toxic, flammable, and radioactive material) and that the lubricant has been drained. If the manufacturer finds it necessary to carry out further cleaning work, we accept the charge will be made to us.				
We assure that the aforementioned information is correct and complete requirements.	e and that the uni	t is dispatche	ed according to th	e legal
Company / address:	Phone:			
	Fax:			
	Email:			
Customer No.:	Contact perso	n:		
Date, Signature:				

18 Warranty application

Warranty Application

Please copy and send it back with the unit!

If the device breaks down within the period of warranty, please return it in a cleaned condition with the complete warranty application, filled out.

Sender

Company:	Phone:	. Date:
Address:		
Contact person:		
Manufacturer order no.:	Date of delivery:	
Device type:	Serial number:	
Nominal capacity / nominal pressure:		
Description of fault:		
Service conditions of the device		
Point of use / system designation:		
Accessories used (suction line etc.):		
Commissioning (date):		
Duty period (approx. operating hours):		

Please describe the specific installation and enclose a simple drawing or picture of the chemical feed system, showing materials of construction, diameters, lengths and heights of suction and discharge lines.

Solenoid-Diaphragm Dosing Pump MAGDOS LD

Notes

19 Index

A

Accessories	

B

-	
Back-pressure valve	

C

D

Ε

EC Declaration of Conformity	
Electrical installation2	
Electrical specifications1	3
External On/Off via Release input	6
External operating mode	
Calculating the transmission factor	3
Setting the transmission and reduction	3
External operation	3
External release	
Installing2	8
Setting	6

F

Foreseeable misuse
Function description11

G

Η

Hazards due to non-compliance with the safety instructions	7
Hose clip	17
Hydraulic accessories	20
Hydraulic connections	17
Hydraulic installations	16

I

- Injection nozzle	20
Inputs of the control unit	
Installation	15
Electrical	
Hydraulic	16
Instructions for action	
Identification	5
Intended purpose	8
Intended use	8
Internal operation	

L

Leakage drain	19
Level input	
Connection	29
Level monitoring	24
Explanation of the icons	30

Μ

Maintenance	. 38
Maintenance intervals	. 38
Menu icons	. 30

Ν

```
Notes for the Reader ......4
```

0

Operating conditions and limits	
Operating modes	
Explanation of the icons	
External operation	
Internal operation	
Operation	
Operation with contact-type water meter	35
Operator controls of the control unit	
Outputs of the control unit	

Solenoid-Diaphragm Dosing Pump MAGDOS LD

Ρ

-	
Personal protective equipment	7
Personal personal protective equipment	7
Personnel qualification	7
Piping	17
Pressure relief valve	21
Priming aid	24
Product description	10
Product warranty	8
Pulsation dampener	23
Pulse input	
Connection	28

Warnings	
General warnings	6
Identification	4
Warranty application	
Water meter	21
Working in a safety-conscious manner	7

R

Rating plate	11
Release input	
Connection	28
Explanation of the icons	30
Rubber	27, 28, 29

S

-	
Safety	6
Scope of delivery	10
Set up information	
Setting the transmission and reduction	
Shutdown	
Shutting down in an emergency	
Signal words	
explanation	4
Spare parts	43
Specialist staff	7
Start up	
Storage	
Structure of the dosing pump	10
Suction pressure regulator	23
Suspensions	25
System piping	17

T

Technical data	12
Temperatures	
Maximum ambient temperature	12
Maximum media temperatures	13
Tighten up dosing head bolts	39
Trained persons	7
Transportation	37
Troubleshooting	40

V

Venting	
Venting the dosing pump32	

W

Wall bracket	
Wall mounting	15
Warning signs	
explanation	4

Product Range Lutz Pumpen GmbH P.O. Box 1462 • D-97864 Wertheim www.lutz-pumpen.de

Barrel and Container Pumps

Product Range

Lutz-Jesco GmbH

www.lutz-jesco.com

Dosing Pumps

P.O. Box 100164 • D-30891 Wedemark

Measuring and Control Equipment

Flow Meters

Chlorinators

Disinfection

Double Diaphragm Pumps

Chemical Centrifugal Pumps

Standard Plus

Centrifugal Pumps

T≋GHN0POOL

Products for the disinfection of swimming pool water based on salt water electrolysis and domestic water technology

The Lutz-Jesco App for iPads is available from the iTunes App Store. Additional information can be found at www.lutz-iesco.com

Headquarters Lutz-Jesco GmbH Am Bostelberge 19 30900 Wedemark Germany

Tel.: +49 5130 5802-0 Fax: +49 5130 580268

E-mail: info@lutz-jesco.com Website: www.lutz-jesco.de

Hungary Lutz-Jesco Üzletág Vasvári P. u. 9. 9024 Györ Hungary

Tel.: +36 96 523046 Fax: +36 96 523047

E-mail: info@lutz-jesco.hu Website: www.lutz-jesco.hu Austria Lutz-Jesco GmbH Aredstraße 7/2 2544 Leobersdorf Austria

Tel.: +43 2256 62180 Fax: +43 2256 6218062

E-mail: info@lutz-jesco.at Website: www.lutz-jesco.at

Netherlands Lutz-Jesco Nederland B.V. Nijverheidstraat 14 C 2984 AH Ridderkerk Netherlands

Tel.: +31 180 499460 Fax: +31 180 497516

E-mail: info@lutz-jesco.nl Website: www.lutz-jesco.nl

Great Britiain USA East Asia Middle Fast Lutz-Jesco (GB) Ltd. Lutz-Jesco East Asia Sdn Bhd Lutz-JESCO America Corp. Lutz-Jesco Middle East FZE Gateway Estate 55 Bermar Park 6 Jalan Saudagar U1/16 P.O. Box 9614 Hicom Glenmarie Industrial Park Rochester, N.Y. 14624 West Midlands Freeport SAIF-Free Zone Center Birmingham B26 3QD USA 40150 Shah Alam/ Selangor Sharjah Great Britain Malaysia UAF Tel.: +44 121 782 2662 Tel.: +1 585 426-0990 Tel.: +971 6 5572205 Tel.: +603 55692322 Fax: +44 121 782 2680 Fax: +1 585 426-4025 Fax: +603 55691322 Fax: +971 6 5572230 E-mail: info@lutz-jesco.co.uk E-mail: mail@jescoamerica.com E-mail: info@lutz-jescoasia.com E-mail: info@jescome.com Website: www.lutz-jesco.co.uk Website: www.lutzjescoamerica.com Website: www.lutz-jescoasia.com Website: www.jescome.com