Product Catalogue

2009-05

Contents

- 1 Portable Instruments for Condition Monitoring
- 2 Continuous Monitoring Systems
- 3 Software
- 4 Shock Pulse Transducers, Adapters and Tools
- 5 Vibration Transducers and Transmitters
- 6 Accessories for Remote Monitoring
- 7 Cables, Connectors and Tools
- 8 Diagnostic Tools for Maintenance
- 9 Precut Shims
- 10 Instruments Approved for Potential Explosive Atmosphere

Portable Instruments for Condition Monitoring

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com Technical data are subject to change without notice. ISO 9001 certified. © SPM Instrument AB. 71700 B

Bearing Checker

Bearing Checker is a portable instrument for fast and easy measurement of bearing condition in preventive maintenance. The instrument is push button controlled and basic measurement data are entered manually.

Bearing Checker measures shock pulses with a built-in probe and machine surface temperature with an infrared sensor. The instrument can also be used as an electronic stethoscope for detecting machine sound irregularities.

Technical data

Material, casing:	ABS/PC	S
Size:	158 x 62 x 30 mm	Ν
	(6.2 x 2.4 x 1.2 in)	
Weight:	185 g (6.5 ounces) including	Т
	batteries	
Keypad:	Sealed membrane (silicone	Т
	rubber)	Т
Display:	Graphic monochrome, 64 x	R
	128 pixels, LED backlight	Т
Bearing condition	Green, yellow and red light	
indication:	diodes	
Measurement indication:	Blue light diode	S
Power supply:	2 x 1.5 V AA batteries, alcaline	E
	or rechargeable	
Battery life:	> 20 hours of normal use	A
Operating temperature:	0 °C to +50 °C (32 °F to 122 °F)	E
Input connector:	Lemo coaxial, for external	
	shock pulse transducers (probe	A
	or quick connector)	E
Output connector:	3.5 mm stereo mini plug for	Т
	headphones	Т
General functions:	Battery status display, trans-	C
	ducer line test, metric or Impe-	1
	rial units of measurement,	1
	language independent menus	1
	with symbols, storage of up to	1
	10 measurement values	9

Shock pulse measurement

Measurement technique:	dBm/dBc, measuring range -9 to 90 dBsv, <u>+</u> 3 dBsv
Transducer type:	Built-in probe transducer
Temperature measurem	ent
Temperature range: Resolution: Transducer type:	–10 to +185 °C (14 to +365 °F) 1 °C (1 °F) Thermopile Sensor TPS 334/3161, built-in contact free IR-sensor
Stethoscope Earphone mode:	8 level amplification

Article numbers

BC100 Bearing Checker, excl. batteries and accessories

Accessories	
Headphones with eardefenders	
External transducer with probe	
Transducer with quick connector for adapters	
Measuring cable, 1.5 m, Lemo - BNC slip-on	
Belt holder for external probe transducer	
Belt case for accessories	
Protective cover with wrist strap	
Protective cover with belt clip	
Cable adapter, Lemo - BNC	
Cable adapter, BNC - TNC, plug-jack	

Leonova[™]Infinity – Platform

Leonova[™] Infinity is a hand-held machine condition analyser with colour touch screen, operating under Windows CE. Following functions are always included for unlimited use:

- Data logging with Condmaster®Nova
- ISO 2372 vibration monitoring
- Speed measurement
- Temperature measurement
- Analog signals, current and voltage
- Reading from and writing to CondID[®] memory tags
- Manual recording, free quantity
- Check points, free text

The main Leonova functions are user selected, see TD-212. With synchronous measurement, enveloping, true zoom and up to a 12 800 line spectrum over 0.5 Hz up to 40 kHz, Leonova[™] Infinity has full vibration analysis capacity. SPM has also incorporated the evaluation tables of the new ISO 10816 standards for broad-band measurement of vibration velocity, acceleration and displacement. For single and dual plane rotor balancing, an easy to use graphical guide calculates balancing weights and their position. For shaft alignment, Leonova Infinity uses advanced laser technique with easy targeting, modulated line laser beam and automatic precision calculation of shaft positions.

Ordering numbers

Leonova Infinity, Grey, incl. wrist strap and stylus
Leonova Infinity, Blue, incl. wrist strap and stylus
Charger 9.3 V/1.33 A, 100-240 V AC, Euro-plug
Charger 9.3 V/1.33 A, 100-240 V AC, US-plug
Charger 9.3 V/1.33 A, 100-240 V AC, UK-plug
Communication cable, USB
Communication cable RS232, 9 pin
Belt clip
Protective cover
Carrying case, plastic with foam insert

Parts of the Leonova Infinity system are specified on the technical data sheets (TD) listed below:

Instrument specifications	TD-211
Selection of instrument functions	TD-212
SPM Shock pulse measurement, dBm/dBc	TD-213
SPM Shock pulse measurement, LR/HR	TD-214
SPM Spectrum™	TD-218
ISO 2372 vibration monitoring	TD-225
ISO 10816 vibration monitoring with spectrum	TD-219
FFT with symptoms	TD-220
EVAM [®] Evaluated vibration analysis	TD-221
2 channel simultaneous vibration monitoring	TD-222
Run up/Coast down and Bump test	TD-223
Orbit analysis	TD-224
Balancing	TD-226
Shaft alignment	TD-227
Long-time recording	TD-228
Order tracking	TD-306
Services	TD-229
Protective cover	TD-246
Transducers and measuring cables	TD-247
LineLazer ^{II} detector units	TD-267

Spare parts

15178	Stylus for touch screen
14661	Wrist strap
PRO49	Leonova Service Program
71789	Instruction "Getting started"
71792	Leonova Infinity User guide

Patent No.: US7313484, US7167814, US7200519, US7054761, US7324919 EPO1474664, DE60304328.3, FR1474664, GB1474664, NL1474664, SE03731865.6

LeonovaTM Infinity – Instrument Specifications

Leonova Infinity is a multi-function, hand-held data logger. The instrument is operated via keypad and touchscreen. Basic data for the measurement set-up can be input manually or downloaded from Condmaster®Nova.

Leonova Infinity is always programmed for an unlimited use

Technical data, instrument (Platform)

Housing: ABS/PC, Santoprene, IP54 Dimensions: 285 x 102 x 63 mm (11.2" x 4" x 2.5") Weight: 580 g (20 oz.) Keypad: sealed, snap action Display: touch screen, TFT colour, 240 x 320 pixels, 54 x 72 mm (2.1 x 2.8 inch), adjustable backlight 400 MHz Intel[®] XScale[®] Main processor: Memory: 64 MB RAM, 32 MB Flash expandable up to 4 GB Microsoft Windows® CE.net Operating system: Communication: RS232 and USB Dynamic range: 16 bit A/D converter, automatic gain settings Condition indication: green, yellow and red LEDs Power supply: rechargeable Lithium-Ion batteries Battery power: for minimum 8 hours normal use Operating temperature: 0 to 50 °C (32 to 120 °F) Charging temperature: 0 to 45 °C (32 to 113 °F) General features: language selection, battery charge display, transducer line test, metric or imperial units Meas. point identification: RF transponder for communication with CondID[™] tags, read/write distance max. 50 mm (2 inch)

of the measuring functions listed below (Platform). Other diagnostic and analytic functions, for shock pulse measurement, vibration measurement, orbit analysis, rotor balancing and shaft alignment, are user selected. For technical information and specifications, see respective data sheets listed on TD-212.

Vibration severity (ISO 2372)

	Measurement quantity:	vibration velocity, RMS, range 10 – 1000 Hz
	Evaluation table selection:	menu guided, ISO 2372
	Vibration transducer input:	<18 Vpp. Transducer supply of 4 mA for IEPE* (ICP) type can be set On/Off
	Transducer types:	Any transducers (disp., vel. or acc.) with voltage output
	Vibration channels:	2, simultaneous measuring
	Speed measurement	
	Measuring range:	10 to 60 000 rpm
	Resolution:	1 rpm
	Accuracy:	± (1 rev. + 0.1% of reading)
	Transducer type:	TAD-18, TTL-pulses
	Temperature measureme	nt
	Measuring range:	–50 to +440 °C (–58 to 824 °F)
	Resolution:	1 °C (1 °F)
	Transducer type:	TEM-11 with TEN-10 (surface tem- perature) and TEN-11 (liquids)
	Analog signals	
2	Measurement range:	0 to 1 V DC, 0 to 10 V DC, 0 to 20 mA, 4 to 20 mA
	* Integral Electronic PiezoEle	ctric

Patent No.: US7313484, US7167814, US7200519, US7054761, US7324919 EPO1474664, DE60304328.3, FR1474664, GB1474664, NL1474664, SE03731865.6

Leonova™ Infinity – User selected functions

Leonova™ Infinity Platform, always included for unlimited use

- Data logging with Condmaster®Nova
- RMS vibration, ISO 2372
- Speed measurement
- Temperature measurement
- Analog signals, current and voltage
- Reading from and writing to CondID[®] memory tags
- Manual recording, free quantity
- Check points, free text

To obtain the optimal performance range and instrument price for their purpose, Leonova users can select any or all of the 16 condition diagnosis and maintenance functions below, under two alternative conditions of sale. The choice is between unlimited and limited use (Function & Use).

When use is limited, the price for the function itself is much lower. Instead, the user prepays a tankful of 'credits'.

Functions for Unlimited Use

LEO130 Shock pulse method dBm/dBc LEO131 Shock pulse method LR/HR LEO132 SPM Spectrum LEO133 ISO 10816 vibration monitoring with spectrum LEO134 FFT with symptoms LEO135 EVAM evaluated vibration analysis, time signal LEO136 2 channel simultaneous vibration monitoring LEO137 Run up / coast down & bump test LEO138 Orbit analysis LEO151 Shock pulse method dBm/dBc and LR/HR LEO152 Balancing, single plane LEO153 Balancing, dual plane LEO154 Balancing, single and dual plane LEO155 Shaft alignment

Options

- LEO139 12 800 lines, 40 kHz
- LEO160 Recording function
- LEO161 Extended memory, 512 MB
- LEO162 Extended memory, 1 GB
- LEO163 Extended memory, 4 GB
- LEO164 Time signal, option to FFT with symptoms

Free and limited functions can be combined at will. Platform functions are always included and their use is unlimited.

Functions for Limited Use (Function & Use)

LEO230	Shock pulse method dBm/dBc (1)
LEO231	Shock pulse method LR/HR (2)
LEO232	SPM Spectrum (2)
LEO233	ISO 10816 vibration monitoring with spectrum (1)
LEO234	FFT with symptoms (2)
LEO235	EVAM evaluated vibration analysis, time signal (2)
LEO236	2 channel simultaneous vibration monitoring (4)
LEO237	Run up / coast down (50) and Bump test (25)
LEO238	Orbit analysis (5)
LEO251	Shock pulse method dBm/dBc and LR/HR
LEO252	Balancing, single plane (4 runs 16, 2 runs 42)
LEO253	Balancing, dual plane (80)
LEO254	Balancing, single and dual plane
LEO255	Shaft alignment (30)
Credit co	onsumption is stated within brackets.

Leonova[™]Infinity – Shock pulse measurement, dBm/dBc

For over 30 years, the original Shock Pulse Method (SPM) has been very successfully used to obtain a fast, easy and reliable diagnosis of the operating condition of rolling element bearings.

The signal

Throughout their lifetime, bearings generate shocks in the interface between the loaded rolling element and the raceway. These shocks 'ring' the SPM transducer which outputs electric pulses proportional to the shock magnitude.

Unlike vibration transducers, the shock pulse transducer responds at its carefully tuned resonance frequency of about 32 kHz, which allows a calibrated measurement of the shock pulse amplitudes.

Measurement

The shock pulse meter counts the rate of occurrence (incoming shock pulses per second) and varies the measuring threshold until two amplitude levels are determined:

- the shock carpet level (approx. 200 incoming shocks per second. This level is displayed as **dBc** (decibel carpet value).
- the maximum level (highest incoming shock under 2 seconds). This level is displayed as **dBm** (decibel maximum value). Using a blinking indicator or earphones, the operator can establish a peak value by increasing the measuring threshold until no signal is registered.

Because of the very large dynamic range, shock pulses are measured on a decibel scale (1000 x increase between 0 and 60 dB).

Shock pulse amplitude is due to three basic factors:

- Rolling velocity (bearing size and rpm)
- Oil film thickness (separation between the metal surfaces in the rolling interface). The oil film depends on lubricant supply and also on alignment and pre-load.
- The mechanical state of the bearing surfaces (roughness, stress, damage, loose metal particle).

Input data

The effect of rolling velocity on the signal is neutralized by giving rpm and shaft diameter as input data, with 'reasonable accuracy'. This sets an initial value (dBi), the start of the 'normalized' condition scale.

Evaluation

The initial value and the range of the three condition zones (green - yellow - red) was empirically established by testing bearings under variable operating conditions. The maximum value places the bearing into the condition zone. The height of the carpet value and delta (dBm minus dBc) indicated lubrication quality or problems with bearing installation and alignment.

Technical data

Measuring range:	–9 to 99 dBsv
Resolution:	1 dBsv
Accuracy:	± 1 dBsv
Transducer types:	SPM 40000/42000, probe transducer and quick connector transducer for adapters
Input data:	Rpm, shaft diameter (or ISO bearing number)
Output:	Maximum value dBm, evaluated green - yellow -red, carpet value dBc, peak value, audible shock pulse signal (earphones).

LEO130	Shock pulse method dBm/dBc, unlimited us	е
LEO230	Shock pulse method dBm/dBc, limited use	

Leonova™ Infinity – Shock pulse measurement, LR/HR

The LR/HR method was developed from the original Shock Pulse Method for condition diagnosis of rolling element bearings. It allows a precision analysis of oil film condition in the rolling interface and contains calculation models for finding the optimal lubricant. Poor lubrication is the root cause of most bearing failures.

Signal and measurement

Transducer and measuring procedure are the same as for the dBm/dBc method (TD-213). The shock pulse meter counts the rate of occurrence (incoming shock pulses per second) and varies the gain until two amplitude levels are determined:

- HR = high rate of occurrence, quantifying the shock carpet (approx. 1000 incoming shocks per second).
- LR = low rate of occurrence, quantifying the strong shock pulses (approx. 40 incoming shocks per second).

LR and HR are 'raw values', measured in dBsv (decibel shock value).

Input data

The LR/HR method requires more precise data on the bearing, because bearing geometry, as well as size and speed, affect the shock carpet and thus the analysis of oil film condition in undamaged bearings. The rpm is needed, plus a definition of the bearing type and size. This is best input by stating the ISO bearing number, which links to the bearing catalogue in Condmaster.

Evaluation

After measurement Leonova returns

- a general description of bearing condition (CODE)
- a value for oil film condition (LUB)
- a value for surface damage (COND).

A LUB no. of 0 means dry running, the value increases with oil film thickness. A COND no. of around 30 indicates surface stress or early damage, the value increases with damage severity. The general assessment is:

CODE A Good bearing CODE B Poor lubrication CODE C Dry bearing, risk of damage CODE D Damage.

A program part, LUBMASTER, uses the shock values plus data on lubricant type, viscosity, load and operating temperature to calculate the bearing's life expectancy under present condition. It also calculates the effect of changes in oil type and viscosity.

Calibration

The accuracy of the LR/HR method is increased by a calibration factor (COMP no.) used in case of bearings with minimal load or poor quality measuring points (in both cases the signal strength is below normal). On the basis of the bearing's catalogue data and the lubricant properties, Leonova calculates the normal shock level for a good bearing and compensates for an abnormally low signal before returning the evaluation results.

Technical data

Measuring range:	–19 to 99 dBsv
Resolution:	1 dBsv
Accuracy:	± 1 dBsv
Transducer types:	SPM 40000/42000, probe transducer and quick connector transducer for adapters
Input data:	Rpm, plus bearing type and mean diameter (or ISO bearing number)
Output:	LR and HR (raw shock values), CODE A to D, evaluated green - yellow - red. LUB no. for oil film condition, COND no. for surface condition.

LEO131	Shock pulse method LR/HR, unlimited use
LEO231	Shock pulse method LR/HR, limited use

Leonova[™]Infinity – SPM Spectrum

The purpose of 'SPM Spectrum' is to verify the source of high shock pulse readings. Shocks generated by damaged bearings will typically have an occurrence pattern matching the ball pass frequency over the rotating race. Shocks from e. g. damaged gears have different patterns, while random shocks from disturbance sources have none.

Signal and measurement

The resonance frequency of the SPM shock pulse transducer, calibrated to 32 kHz, constitutes the ideal carrier wave for transients caused by shocks. The output of this transducer is the same type of demodulated signal produced by 'enveloping', with this important difference: both frequency and amplitude response of the SPM transducer are precisely tuned, so there is no need to find uncertain and shifting machine resonances to get a signal.

Leonova first measures the shock amplitude by a shock pulse measurement with the dBm/dBc or the LR/HR method. The results are the bearing condition data, evaluated green - yellow - red.

The second measurement produces a time record that is subjected to a Fast Fourier Transform (FFT). The resulting spectrum is used mostly for pattern recognition. Spectrum line amplitudes are influenced by too many factors to be reliable condition indicators, so all condition evaluation is based on the dBm or the HR values.

One unit for amplitude in an SPM spectrum is S_D (Shock Distribution unit), where each spectrum is scaled so that the total RMS value of all spectrum lines = 100 S_D = the RMS value of the time record. The alternative is S_L (Shock Level unit), the RMS value of the frequency component in decibel. Alarm levels are manually set for each symptom to show evaluated results in green - yellow - red. Various types of spectra can be produced. The recommended setting is a spectrum with a resolution of at least 0.25 Hz, e. g. 3200 lines over 500 Hz, saving peaks only.

Input data

Pattern recognition demands precise data on the bearing and exact measurement of the rpm. The rpm should be

Pattern recognition:

Bearing with rotating inner race and a damaged outer race. BPFO = ball pass frequency outer race and its multiples dominate the shock pulse spectrum.

measured, not preset. The factors defining the bearing frequencies are obtained from the bearing catalogue in Condmaster by stating the ISO bearing number.

Evaluation

The frequency patterns of bearings are preset in Condmaster. Linking the symptom group 'Bearing' to the measuring point allows the user to highlight a bearing pattern by clicking on its name. Other symptoms can be added when appropriate, e. g. for gear mesh patterns. Finding a clear match of a bearing symptom in the spectrum is proof that the measured signal originates from the bearing.

Technical data

Frequency range:	0 to 100, 200, 500, 1000, 2000, 5000, 10 000, 20 000 Hz
Number of spectrum lines:	400, 800, 1600, 3200, 6400
Measurement windows:	Rectangle, Hanning, Hamming, Flat Top
Spectrum types displayed:	linear, power
Averages:	time synchronous, FFT linear, FFT peak-hold
Frequency units:	Hz, CPM
Saving options for spectrum:	full spectrum, peaks only
Amplitude scale unit:	${\rm S}_{_{\rm D}}$ (Shock Distribution), ${\rm S}_{_{\rm L}}$ (Shock Level)
Scaling:	linear or logarithmic X and Y axis
Zoom:	true FFT zoom, visual zoom
Pattern recognition:	Bearing frequencies and optional patterns highlighted in the spec- trum. Automatic configuration of bearing symptoms linked to ISO bearing no.
Transducer type:	Shock pulse transducers with probe and quick connector, SPM 40000/42000

As an option, the frequency range can be extended to 40000 Hz, the number of spectrum lines to 12800.

Ordering numbers

LEO132	SPM Spectrum, unlimited use
LEO232	SPM Spectrum, limited use
LEO139	12 800 lines, 40 kHz, option

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 225 00 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

Leonova[™]Infinity – Vibration ISO 2372

Broad band vibration measurement is the most widely used and cost-efficient method for the diagnosis of general machine condition. There are two ISO recommendations concerning this type of machine condition monitoring, the much used ISO 2372 and the more recent ISO 10816, which is a ongoing replacement of the older standard.

In Leonova, vibration measurement according to ISO 2372 is a platform function, always included for unlimited use.

The features are:

- Machine condition is diagnosed on the basis of broad band measurements returning an RMS value of vibration velocity in the frequency range of 10 to 1000 Hz. This is called vibration severity.
- Machines are grouped into six vibration classes.
- A table of limit values is presented for each vibration class, differentiating between acceptable vibration (green range), unsatisfactory vibration (yellow range), and vibration that will cause damage unless reduced (red range).

- Measurements are made in three direction (horizontal, vertical, axial). The highest value returned determines machine condition.
- Default limit values for the change from green to yellow and from yellow to red are set automatically when one of the six machine classes is input under the measuring point data.

ISO 10816 is offered as a choice, see TD 219.

Technical data

Measurement quantities:	Velocity, RMS value in mm/s over 10 to 1000 Hz
Transducer type:	Vibration transducer SLD144 or IEPE* (ICP®) type transducers with voltage output

* Integral Electronic PiezoElectric

Leonova[™]Infinity – Vibration ISO 10816 with spectrum

Broad band vibration measurement is the most widely used and cost-efficient method for the diagnosis of general machine condition.

There are two ISO recommendations concerning machine condition monitoring by this type of measurement, the much used ISO 2372 and the more recent ISO 10816, which is an ongoing replacement of the older standard.

With Leonova, ISO 2372 measurement is a platform function, always included for unlimited use (see TD-225). ISO 10816 is an option with ordering numbers LEO133 (unlimited use) and LEO233 (limited use).

Features of ISO 10816 are:

- Measurements are made in three direction (horizontal, vertical, axial).
- Machine condition is generally diagnosed on the basis of broad band vibration measurements returning an RMS value. ISO 10816 keeps the lower frequency range flexible between 2 and 10 Hz, depending on the machine type. The upper frequency is 1000 Hz.
- ISO 10816 operates with the term vibration magnitude, which, depending on the machine type, can be an RMS value of vibration velocity, acceleration or displacement. If two or more of these parameters are measured, vibration severity is the one returning the relative highest RMS value. For certain machines, ISO 10816 also recognises peak-to-peak values as condition criteria.

• The standard consists of several parts, each treating a certain type of machines, with tables of limit values differentiating between acceptable vibration (green range), unsatisfactory vibration (yellow range), and vibration that will cause damage unless reduced (red range).

In Leonova, ISO part, machine group and foundation type are input using a multiple choice guide which displays the various ISO definitions and leads to the limit values.

Exceeding the requirements of the ISO standard, Leonova also provides a 1600 line **spectrum**.

Technical data

Measurement quantities:	Velocity, acceleration, and displace ment, RMS values over 2 or 10 Hz to 1000 Hz, peak, peak-to-peak
Spectrum:	Linear, 1600 lines, Hanning window.
Spectrum unit:	Velocity, mm/s or inch/s
Transducer type:	Vibration transducer SLD 144 or IEPE* (ICP®) type transducers with voltage output

* Integral Electronic PiezoElectric

LEO133	Vibration ISO 10816 with spectrum, unlimited use
LEO233	Vibration ISO 10816 with spectrum, limited use

Leonova[™]Infinity – FFT spectrum with symptoms

FFT Spectrum with Symptoms is a vibration analysis function offered with Leonova, for either limited or unlimited use. It is a reduced form of EVAM (Evaluated Vibration Analysis Method), lacking the statistical evaluation by means of criteria and possibility to display and save time signal (option).

This function generates three sets of machine condition data:

- Condition parameters, which are measured and calculated values describing various aspects of machine vibration.
- Vibration spectra where significant line patterns are found, highlighted and evaluated with the help of preset fault symptoms.
- Trending of symptom values. Alarm levels are manually set for evaluation in green- yellow red.

For each measuring point, the user can make an individual selection and define the type of data best suited for the surveillance of an individual machine.

Condition parameters

Condition parameters are measured for a selected frequency range. They can be individually activated and are shown in measuring result tables and as diagrams. Available are:

- VEL RMS value of vibration velocity
- ACC RMS value of vibration acceleration
- DISP RMS value of vibration displacement
- CREST Crest value, difference between peak and RMS
- KURT Kurtosis, the amount of transients in the vibration signal
- SKEW Skewness, the asymmetry of the vibration signal
- NL1 4 Noise level in the four quarters of the frequency range.

Peak and peak-to-peak values are shown in the unit selected for the time signal.

Spectrum analysis with 'symptoms'

For easy pattern recognition in spectra, a range of ready made 'fault symptoms' are downloaded from Condmaster. These are instructions to highlight a spectrum line pattern and display the sum of the lines' RMS values as a symptom parameter (which can be trended).

Most symptoms are automatically configured by using the rpm as a variable, for some an input is needed, e. g. the number of vanes on a rotor.

A special symptom group are the bearing symptoms (showing e. g. ball pass frequencies over inner and outer race) for which the Condmaster bearing catalogue contains all need data.

Suitable symptoms and symptom groups are selected from a menu in Condmaster when the measuring point is set up.

Technical data

Frequency limit, lower:	0.5, 2, 10 or 100 Hz
Frequency limit, upper:	100, 200, 500, 1000, 2000, 5000, 10 000 Hz
Envelope high pass filters:	100, 200, 500, 1000, 2000, 5000, 10 000 Hz
Measurement windows:	Rectangle, Hanning, Hamming, Flat Top
Averages:	time synch, FFT linear,
	FFT exponential, FFT peak-hold
Spectrum lines:	400, 800, 1600, 3200, 6400
Frequency units:	Hz, CPM, orders
Saving options:	peaks only, full spectrum
Spectrum types displayed:	linear, power, PSD
Zoom:	true FFT zoom, visual zoom
Transducer types:	Vibration transducer SLD144 or IEPE (ICP®) type transducers with voltage output

As options, the frequency range can be extended to $40000 \, \text{Hz}/12800$ spectrum lines and possibility to save time signal.

LEO134	FFT with symptoms, unlimited use
LEO234	FFT with symptoms, limited use
LEO139	12 800 lines, 40 kHz, option
LEO164	Time signal, option to FFT with symptoms

Leonova[™]Infinity – EVAM evaluated vibration analysis

EVAM stands for Evaluated Vibration Analysis Method. With Leonova, the EVAM method is offered as an analysing function with either limited or unlimited use.

The EVAM method generates three sets of machine condition data:

- Condition parameters, which are measured and calculated values describing various aspects of machine vibration.
- Vibration spectra where significant line patterns are found, highlighted and evaluated with the help of preset fault symptoms.
- Machine specific condition codes (green, yellow, red) and condition values, based on a statistical evaluation of the condition parameters and symptom values.

For each measuring point, the user can make an individual selection and define the type of data best suited for the surveillance of an individual machine.

Condition parameters

Condition parameters are measured for a selected frequency range. They can be individually activated and are shown in measuring result tables and as diagrams. Available are:

- VEL RMS value of vibration velocity
- ACC RMS value of vibration acceleration
- DISP RMS value of vibration displacement
- CREST Crest value, difference between peak and RMS
- KURT Kurtosis, the amount of transients in the vibration signal
- SKEW Skewness, the asymmetry of the vibration signal
- NL1 4 Noise level in the four quarters of the frequency range.

Peak and peak-to-peak values are shown in the unit selected for the time signal.

Spectrum analysis with 'symptoms'

For easy pattern recognition in spectra, EVAM supplies a range of ready made 'fault symptoms'. These are instructions to highlight a spectrum line pattern and display the sum of the lines' RMS values as a symptom parameter (which can be evaluated and trended). Most symptoms are automatically configured by using the rpm as a variable, for some an input is needed, e. g. the number of vanes on a rotor. Suitable symptoms and symptom groups are selected from a menu in Condmaster when the measuring point is set up.

Machine specific condition codes

In Condmaster, alarm limits can be set on all active parameters. Once measuring results are collected, an EVAM 'criterion' can be created that compares new parameter values with the statistical mean value and displays a dimensionless condition value against a green - yellow - red scale.

Technical data

Frequency limit, lower:	0.5, 2, 10 or 100 Hz
Frequency limit, upper:	100, 200, 500, 1000, 2000, 5000, 10 000, 20 000 Hz
Envelope high pass filters:	100, 200, 500, 1000, 2000, 5000, 10 000 Hz
Measurement windows:	Rectangle, Hanning, Hamming, Flat Top
Averages:	time synch, FFT linear,
	FFT exponential, FFT peak-hold
Spectrum lines:	400, 800, 1600, 3200, 6400
Frequency units:	Hz, CPM, orders
Saving options:	peaks only, full spectrum, time signal
Spectrum types displayed:	linear, power, PSD
Zoom:	true FFT zoom, visual zoom
Transducer types:	Vibration transducer SLD144 or IEPE (ICP®) type transducers with voltage output

As an option, the frequency range can be extended to 40000 Hz, the number of spectrum lines to 12800.

LEO135	EVAM evaluated vibration analysis, unlimited use
LEO235	EVAM evaluated vibration analysis, limited use-
LEO139	12 800 lines, 40 kHz, option

Leonova[™]Infinity – 2 channel simultaneous vibration monitoring

Two channel simultaneous vibration monitoring is a Leonova Infinity function for limited (LEO236) or unlimited (LEO136) use. It requires that either the measuring technique 'FFT with symptoms' or 'EVAM' is active. The function 'FFT with symptoms' requires the option 'Time signal' (LEO164) for possibility to display and save time signal.

This type of measurement allows the user to study machine movement in two dimensions by observing the difference of the phase angles measured on the two channels.

Measurement requires the set-up of two vibration assignments with identical parameters. The 2 channel measuring cable CAB51 is used to connect both transducers to the Leonova vibration transducer input. The procedure is the same as for the corresponding measurement with a single transducer.

After measurement, Leonova displays the RMS values for DISP, VEL and ACC for both channels. Three graphs are available for each measurement:

- Spectrum
- Phase spectrum
- Time signal (option to FFT with symptoms)

In the spectrum and the time signal, the channels are overlayed red and blue.

Technical data

Frequency limit, lower:	0.5, 2, 10 or 100 Hz
Frequency limit, upper:	100, 200, 500, 1000, 2000, 5000, 10 000, 20 000 Hz
Envelope high pass filters:	100, 200, 500, 1000, 2000, 5000, 10 000 Hz
Measurement windows:	Rectangle, Hanning, Hamming, Flat Top
Averages:	time synch, FFT linear, FFT exponential, FFT peak-hold
Spectrum lines:	400, 800, 1600, 3200, 6400
Saving options for spectrum:	peaks only, full spectrum, time signal
Spectrum types displayed:	linear, power, PSD
Zoom:	true FFT zoom, visual zoom
Transducer types:	Vibration transducer SLD144 or IEPE (ICP®) type transducers with voltage output

As an option, the frequency range can be extended to 40 kHz, the number of spectrum lines to 12800.

- LEO136 2 channel vibration monitoring, unlimited use
- LEO236 2 channel vibration monitoring, limited use
- LEO139 12 800 lines, 40 kHz, option
- LEO164 Time signal, option to FFT with symptoms
- CAB 51 2 channel measuring cable, Lemo

Leonova™ Infinity – Run up/coast down and Bump test

Run up / coast down measurements and Bump test are two vibration analysis functions offered with Leonova Infinity, for either limited or unlimited use. The bump test is employed to check out the typical vibration response of a machine structure at standstill, by hitting it e. g. with rubber mallet (bump test). Run up/coast down records the changes in vibration while the machine is run up to operating speed or after it has been shut off and is slowing to a stop. Both functions are selected from the menu of an ordinary vibration measurement assignment.

Run up/coast down

For this test, both the signal unit and the display unit for the spectrum can be selected. Leonova Infinity uses both digital and analog integration, so the signal unit can be set independent of the transducer type used.

The measuring interval can be either time based (interval in seconds) or speed based (interval in rpm). The speed range is also chosen, e. g. 400 to 3000 rpm.

The first result is a list of the numbered measurements, showing rpm and RMS vibration value. The date and time of the first measurement are displayed.

For each individual measurement, a spectrum can be called up. Another list and diagram show the phase angles in degrees. Finally, the user can call up diagrams for vibration amplitude and angle, showing all measurements in time sequence. In all diagrams, a blue dot shows the position of the measurement marked on the list.

Bump test

The user sets the measuring range in Hz, which automatically sets the sampling time, e. g. 0.20 seconds for 2000 Hz/400 lines. A pre-trigging time, 5% to 25% of the sampling time, is also chosen.

The gain level is set by hitting the machine frame with varying force. The peak amplitude of the measured signal is displayed (velocity in mm/s) and a trigger level can be set to 1% - 90% of the amplitude.

The actual test returns an FFT spectrum and a time signal (sampling time plus pre-trigging time).

Technical data

Run up/coast down	
Frequency limit, lower:	0.5, 2 10 or 100 Hz
Frequency limit, upper:	1 to 9999 orders
Measuring interval:	speed or time based
Measurement windows:	Rectangle, Hanning, Hamming, Flat Top
Spectrum lines:	400, 800, 1600, 3200, 6400, 12800
Spectrum types displayed:	linear
Bump test	
Frequency limit, lower:	2 Hz
Frequency limit, upper:	100, 200, 500, 1000, 2000, 5000, 10 000, 20 000, 40 000 Hz
Spectrum lines:	400, 800, 1600, 3200, 6400, 12800
Spectrum types displayed:	linear
Pre-trigger time:	5%, 10%, 20%, 25% of sampling time
Transducer types:	Vibration transducer SLD144 or IEPE* (ICP®) type transducers with voltage output
*	

* Integral Electronic PiezoElectric

LEO137	Run up/coast down and Bump test, unlimited use
LEO237	Run up/coast down and Bump test, limited use

Leonova™ Infinity – Orbit analysis

Orbit analysis is a vibration measurement function offered with Leonova infinity, for either unlimited (LEO138) or limited use (LEO238). The resulting orbit graph shows the movement of the shaft's centerline and is used to detect failures like rubs, unbalance, misalignment or oil whip on machinery with journal bearings.

The measurements are normally made on the buffered outputs of a machine protection system via the Orbit Interface 15315. The interface is connected to the vibration and the tachometer inputs on Leonova. Signal inputs, channel X, channel Y and tachometer are connected via BNC connectors.

Measurements can also be made with e.g. accelerometers to get a two dimensional graph of machine movement. Required are two channel simultaneous vibration measurement and two transducers placed at an angle of 90° to each other, plus a trigger signal from a tachometer probe.

Settings include transducer type, signal unit and filter type, either bandpass (default) or lowpass. Orders is set to 1 by default, but the user can select from 1 to 5 orders. The number of revolutions parameter, max. 25, specifies the number of shaft revolutions to acquire and display in the orbit graph.

During measurement, the result window shows displacement in the x and y direction per revolution. When the measurement is complete, the average of the measured number of revolutions is shown. The orbit graph shows an overlay of the graphs for each measured revolution plus their average. The user can select each individual revolution as well as the average of all revolutions.

The selected graph is marked blue, with a blue arrow showing the angle and the x/y values at that angle. The user can move the arrow on the screen via tap and hold on the orbit graph.

When the orbit assignment is set up in Condmaster Nova, alarm limits can be set on the X and Y axis, resulting in an evaluated measurement (green - yellow- red scale).

Technical data

Orders:	1 to 5, default 1
Filter types:	None, band pass, low pass
Signal unit:	DISP, VEL, ACC
Trig threshold:	Automatic
Measuring time:	1 to 25 revolutions
RPM range:	15 to 20 480 rpm
Transducer types:	Buffered outputs from API670 approved protection systems via Orbit Interface 15315, alternative vibration transducers SLD144 or IEPE (ICP®) type transducers with voltage output

LEO138	Orbit analysis, unlimited use
LEO238	Orbit analysis, limited use
15315	Orbit Interface with belt clip
15326	Set of measuring cables, 3 x BNC - BNC
CAB10	Tachometer cable, spiral

Leonova[™]Infinity – Balancing

Single and dual plane balancing are optional Leonova functions with either limited or unlimited use. In case of limited use, credits are deducted for each vibration measurement.

Single plane balancing, 4 runs

This method uses one measurement without trial weight to determine the vibration severity (mm/s RMS) of the rotor, followed by three measurements with trial weights at 0°, 120° and 240° to calculate the weight and position of the correction mass.

Single plane balancing, two runs

This method uses one measurement without trial weight to determine the vibration severity (mm/s RMS) of the rotor, followed by one measurements with a trial weight to calculate the weight and position of the correction mass. It requires time synchronised vibration measurement (trigger pulse supplied by a pulse from the SPM tachometer probe or a proximity switch) to find the relative phase angle between the two vibration measurements.

Dual plane balancing

The same two run method as used for single plane balancing, but with vibration measurement and weight correction in two planes. These measurements can be made by shifting the vibration transducer or by connecting two transducers.

For all methods, a final run can be made to check the balancing results and, if needed, get the data for further adjustments. Leonova then saves a balancing log file. Leonova guides step-by-step through the balancing procedure. One can shift the rotation direction and change the measured parameter from velocity to acceleration or displacement.

In addition to the RMS value, a spectrum is shown to help find the part of vibration that is due to unbalance. For the two run methods, the number of samples for obtaining a time synchronous average is set to min. 4.

Leonova calculates a number of alternatives for correcting the unbalance:

- Trial weight: Input rotor diameter, weight and rpm to obtain the suitable trial weight in grams.
- Split the correction mass: Input the number of rotor partitions to distribute the correction mass between two of them.
- Weight removal: Drill hole diameter and depth calculated for various materials.
- Radial displacement: Input the change in radial distance to recalculate the weight.
- Degrees to length: change from angle to length measured along the rotor circumference.
- Keep trial weight: Calculate the correction mass with the trial weight remaining in place.
- Sum up weights: Replace all correction masses on the rotor by one.

Ordering numbers

LEO152	Balancing, single plane, unlimited use
LEO252	Balancing, single plane, limited use
LEO153	Balancing, dual plane, unlimited use
LEO253	Balancing, dual plane, limited use
LEO154	Balancing, single and dual plane, unlimited use
LEO254	Balancing, single and dual plane, limited use

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 225 00 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

Leonova[™] – Shaft Alignment

Shaft Alignment is an optional Leonova[™] function for quick and easy shaft alignment, with either limited or unlimited use. In case of limited use, credits are deducted for each alignment assignment. The function is user-friendly and easy to learn.

The LineLazer Accessory Set contains detector/transmitter units, brackets, chains, rods, cables and a measuring tape, all in a carrying case. This set fits a multitude of applications, e.g. compressors, gearboxes, generators, and pumps.

The detector units have position detectors (PSD) with a large reception area, which makes fine tuning unnecessary. Compensation values for thermal growth can be input. Integrated precision inclinometers measure the angle of rotation of both detector units at all times. This allows measurement in fully automatic mode, with much less than a half-turn of the shaft. Measurement results are displayed in 100ths of millimetres or 1000ths of an inch.

The Leonova instrument is the control and display unit. The interaction between the graphical display and the user is kept as simple as possible. A self-explanatory display based on icons and graphics guides the user to make a perfect shaft alignment. Leonova produces a log file with all alignment data for documentation and printing.

Measurement programs:

- Alignment of horizontally mounted machines (automatic measurement or manual promts)
- Alignment of vertically and flange mounted machines
- Softfoot measurement
- Compensation for thermal growth
- Feet lock function
- Shaft alignment log

Ordering numbers, Leonova[™] Infinity

•	
LEO155	Shaft alignment, unlimited use
LEO255	Shaft alignment, limited use

Ordering numbers, Leonova™

LEO 220	Sha	ft alignment, unlimited use, upgrade	
LEO 420	Sha	Shaft alignment, limited use, upgrade	
LineLazer Accessory Set LLA300			
LLB30	1 рс.	LineLazer detector, lower beam (TD-267)	
LLB31	1 рс.	LineLazer detector, upper beam (TD-267)	
LLB11	2 pcs.	Extension chain, length 1000 mm	
LLB12	2 pcs.	Chain with tension adapter, length 500 mm	
LLB13	1 set	Supporting rod, 80 mm, set of 4	

- LLB14 1 set Supporting rod, 150 mm, set of 4
- LLB15 2 pcs. Shaft bracket for chain
- CAB50 1 pc. Communication cable between LineLazer and Leonova Infinity, length 3 m
- CAB75 1 pc. Charger cable, length 1.5 m
- MAA70 1 pc. Measuring tape
- TOL21 1 pc. Torquing tool for chains and rods
- CAS19 1 pc. Carrying case, plastic with foam insert

Battery charger

90362
Charger, 100-240 V AC, 50-60 Hz, Euro-plug
90379
Charger, 100-240 V AC, 50-60 Hz, US-plug
90380
Charger, 100-240 V AC, 50-60 Hz, UK-plug
90380
Provide the second second

Options

Magnetic brackets, offset brackets 50 mm and offset brackets 100 mm on request.

Spare parts

LLB20 Supporting rod, 80 mm LLB21 Supporting rod, 150 mm

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

Leonova[™]Infinity – Recording function

Recording is an optional Leonova function with unlimited use. It allows the user to measure simultaneously with up to three different transducers and record measuring results for as long as the battery charge will last. Thus, 'Recording' is an analysis tool that can show the interaction of various condition parameters over time.

Leonova has three separate input connectors, for

- shock pulse measurement
- speed or temperature measurement
- vibration or analogue measurement.

Thus, shock pulse recording can be combined with either of the alternatives given by the other two input.

The recording function for a single quantity, e.g. temperature, can be reached and set up from the default file saved under the respective technique window. To record different quantities at the same time, one needs a measuring point file where all the different techniques are activated. In the example shown above the measuring point is configured for the techniques SPM dBm/dBc with spectrum (which automatically asks for a speed measurement), for ISO 2372 vibration measurement and for EVAM vibration measurement.

Under 'Total' in the recording window, the desired number of measurements is input, alternatively the total recording time in minutes.

Under 'Time between measurements' the interval is input in minutes. 0 minutes means 'as fast as possible'.

The measuring sequence is set by opening the list of available measuring techniques with NEW (A) and selecting techniques in any order. A technique can be used more than once in the sequence.

Recording is started with the 'Measure' key and can be terminated with the 'Cancel' key (B).

Leonova displays the number of measurements taken and powers down when all are recorded. The batch is then saved by the user and can be transferred to Condmaster.

Ordering number

LEO160 Recording function, unlimited use

Leonova[™] Infinity – Order tracking

Order tracking is an optional Leonova function primarily used for vibration analysis on variable speed machines. The method uses multiples of rotational speed (orders), rather than absolute frequency (Hz). The number of orders to be shown is input by the user. Leonova will then automatically set the sampling frequency to an exact multiple of the measured rpm. Order tracking will also minimise the risk of smearing when using FFT averaging.

The purpose of using orders is to lock the display to the rotational speed (1X) and its multiples, which means that the ordered components in the spectrum always remain in the same position in the display, even if the rotational speed varies between the measurements.

Two or several spectra from the same machine with variable speed can therefore more easily be compared if they are expressed in orders. Using order tracking, the frequency range will always cover the symptoms of interest, regardless of the rotational speed of the machine. In the example shown above the measuring point is configured for vibration analysis with order tracking. Under 'Measuring point data' order tracking is marked and the upper frequency is input in orders. The lower frequency is input in Hz or CPM under 'Measuring point data'. 'Variable speed' must be marked and rpm has to be measured.

Leonova displays the spectrum within the selected number of orders. A number of measurements can be displayed in a three dimensional waterfall diagram, where 1X (rpm) and its harmonics remain in the same position in the diagram. The measurements are then saved by the user and can be transferred to Condmaster. Setup of order tracking assignments in Condmaster require the optional software module, MOD188 Order tracking.

Ordering number

LEO165 Order tracking, unlimited use

Leonova[™]Infinity – Services

The service program Leonova.exe is part of the basic function package for Leonova Infinity. It is used to

- print and save balancing and alignment reports.
- load credits and/or functions from the file 'Leonova.txt'
- upgrade a Leonova version from the file 'P70.EXE'.
- display and print a credit log containing all events in connection with measurements credits, up to 10000.
- make and reload safety copies of the Leonova files (file extension .lsc).

The operation of the service program is very simple: connect Leonova to the PC, put it in communication mode, then click on the desired service function. Follow the guidance on the screen.

A safety copy of the Leonova measurement file can be used to export one or more measuring points and, for example, send them to SPM for technical advice.

The file 'Leonova.txt' can contain measuring credits and/or Leonova function that are new for the instrument or changed from limited to unlimited use. It is coded to fit the individual instrument and ordered via the local SPM distributor.

Ordering number PRO49 Leonova Service Program The credits required for a measuring round and the tank status are displayed by Leonova under 'Function and use'. There one can also set the values and time intervals for the 'tank low' warnings.

The amount of credits deducted when the 'Measure' command is given depends on the method used, see table. For balancing, credits are deducted for each vibration reading. The table shows the min. requirement.

Functions with limited use	Credit consumption
Shock pulse method dBm/dBc	1
Shock pulse method LR/HR	2
SPM Spectrum	2
Vibration ISO 10816 with spectrum	1
EVAM evaluated vibration analysis/tin	me signal 2
FFT with symptom	2
2 channel simultaneous vibration mea	surement 4
Orbit analysis	5
Run up/Coast down	50
Bump test	25
Balancing, 1 plane 4 runs	16
Balancing, 1 plane 2 runs	42
Balancing, 2 plane	80
Shaft alignment	30

Technical data are subject to change without notice. ISO 9001 certified. ©Copyright SPM 2007-04. TD-229 B

Leonova[™]Infinity – Protective cover 15310

Protective cover 15310 is an optional accessory for the hand-held machine condition analyser LeonovaTM Infinity. The cover, made of foamed polyester fabric, protects the instrument against shocks, splashes and dirt (IP64). The transparent plastic window makes Leonova easy to operate via the keypad and can be opened to facilitate the use of the touch screen. The cover is provided with holders for wrist strap and stylus.

Technical specifications

Polyester fabric with foam lining and
window of soft transparent PVC foil
Velcro tape, polyamide
95 g

Leonova[™]Infinity – Transducers and measuring cables

Transducers and measuring cables for Leonova[™] Infinity are selected in accordance with the individual instrument's range of measuring functions. The ordering numbers are listed below.

For shock pulse monitoring, only use original SPM shock pulse transducers. For vibration monitoring, any vibration transducer with voltage output can be used.

Shock pulse monitoring

TRA70	Shock pulse transducer with quick connector for
	measuring adapters
TRA72	Shock pulse transducer with probe
CAB36	Measuring cable, BNC slip-on, 1.5 m
EAR10	Earphone in ear defenders, headset, with cable
EAR11	Earphone in ear defenders, for helmet,
	with cable
Vibration	monitoring
SLD144B	Vibration transducer M8 (2-10 000 Hz)

- SLD144F Vibration transducer UNF 1/4"-28 (2-10 000 Hz)
- TRX16 Magnetic foot for vibration transducer M8TRX17 Probe for vibration transducer M8
- CAB38 Measuring cable, spiral, Lemo-TNC
- CAB39 Measuring cable, spiral, angle Lemo-TNC
- CAB48 Measuring cable, spiral, angle Lemo-2 pin
- CAB48-L Measuring cable, Lemo-2 pin (L=length in m)
- CAB51 2 channel measuring cable, Lemo-Lemo
- CAB41 Communication cable for 'iLearn'

Temperature monitoring

- TEN10 Temperature probe tip, surface
- TEN11 Temperature probe tip, liquid
- TEM11 Temperature probe with cable

Current and voltage monitoring

CAB42 Cable for analog signals

Speed monitoring

- TAD10 Contact adapter for tachometer probe
- TAD11 Contact centre, rpm, short
- TAD15 Contact centre, rpm, long
- TAD12 Contact wheel, meter/min.
- TAD13 Contact wheel, yards/min.
- TAD17 Contact wheel, feet/min.
- TAD14 Reflecting tape, pad of 5 sheets
- TAD16 Reflecting tape for thin shafts, 5 sheets
- TAD18 Tachometer probe with cable

Balancing

- CAB43 Cable for TAD18, length 5 m
- 81319 Magnetic base
- 14765 Holder fot tachometer probe TAD18

Spare parts

- 13108 Sleeve for probe tip (TRA-72)
- CAB37 Cable for TRA-72, 1.5 m (5 ft)
- CAB10 Spiral cable for TAD-18, TMM-11

Leonova[™] Infinity – LineLazer[™] detector units

LineLazer^{III} LLB30 and LLB31 are two detector/transmitter units for shaft alignment with the multi-function datalogger Leonova^{III}. The detectors are identical with exception of the position of laser diode and sensor.

Using a horizontally spread laser beam in combination with a 37 mm vertical sensor (PSD) makes fine tuning unnecessary. The laser beam is modulated and thus easily and automatically distinguished from interfering light sources. The laser beam is not mirrored, both units are true detectors/transmitters. The communication between them is wireless, only one of the units is cable connected to Leonova.

The detector units have integrated double axis precision inclinometers which measure the angle of rotation of both detector units at all times. This allows measurement in fully automatic mode, with much less than a half-turn of the shaft. Measurement results are displayed in 100ths of millimetres or 1000ths of an inch.

The control panel on the detector has a power off switch and LED indicators to show correct aim, battery status, and communication mode. The batteries are recharged with the standard Leonova Infinity chargers SPM 90362 (EU), 90379 (US) or 90380 (UK).

Technical specifications

Laser type:	line laser, visible red light
Laser power :	<1 mW
Laser safety class:	Class 2
Laser wavelength:	635 to 657 nm
Laser modulation:	200 kHz
Sensor resolution :	1 µm
Sensor linearity :	< 2% deviation
Sensor size :	37 x 1 mm (1.5 x 0.03 in)
Operating range :	50 to 3000 mm (2 to 120 in)
Inclinometer resolution :	0.5°
Batteries:	NiMH rechargable
Operating time :	> 16 hours normal use
Operating temperature:	0 to +50 °C (32 to 122 °F)
Storage temperature:	-25 to +55 °C (14 to 140 °F), non condensing
Keyboard:	sealed membrane
Control indicators:	LED, red/green
Connector type:	LEMO 5 pins, for communication with Leonova and battery charger
Housing:	aluminium, blue anodized
Protection:	IP65
Dimensions:	116 x 94 x 54 mm (4.6 x 3.7 x 2.1 in)
Weight:	450 g

Patent No.: US7301616, SE 0400586-4

Machine Condition Analyzer A30

Part Numbers

- A30-1 Machine Condition Analyzer A30 Basic
- A30-2 Machine Condition Analyzer A30 Logger
- A30-3 Machine Condition Analyzer A30 Expert
- 13603 Communication module
- CAB-31 Computer cable, male 25 pins- female 25 pins
- CAB-32 Computer cable, male 25 pins- female 9 pins
- CAS-14 Carrying case
- CAS-15 Carrying case with foam insert
- EMD-13 Carrying strap
- FUP-02 Follow-up form for A30, pad of 25 (mm)
- FUP-04 Follow-up form for A30, pad of 25 (inch)

Shock pulse monitoring

- TRA-20 Quick conn. transducer for measuring stud
- TRA-22 Shock pulse transducer, probe assembly
- TRA-30 Shock pulse transd. with quick connector
- EAR-10 Earphone in eardefenders, headset, incl. cable
- EAR-11 Earphone in eardefenders, for helmet, incl. cable
- CAB-07 Cable for remote monitoring, 1.5 m (6 ft)

Vibration monitoring

- TRV-12 Vibration transducer M8 (0-1000 Hz)
- TRV-13 Vibration transducer UNF 1/4"-28 (0-1000 Hz)
- TRV-22 Vibration transducer M8 (0-5000 Hz)
- TRV-23 Vibration transducer UNF 1/4"-28 (0-5000 Hz)
- TRX-16 Magnetic foot for vibration transducer
- TRX-17 Probe for vibration measurement
- VIC-19 Cable for vibration transducer, 1.5 m

Speed monitoring

- TAD-10 Contact adapter for tachometer probe
- TAD-11 Contact center, rpm, short
- TAD-15 Contact center, rpm, long
- TAD-12 Contact wheel, meter / min.
- TAD-13 Contact wheel, yards / min.
- TAD-17 Contact wheel, feet / min.
- TAD-14 Reflecting tape, pad of 5 sheets
- TAD-16 Reflecting tape for thin shafts, 5 sheets
- TAD-18 Tachometer probe with cable

Temperature monitoring

- TEN-10 Temperature probe tip, surface
- TEN-11 Temperature probe tip, liquid
- TEM-11 Temperature probe with cable

Spare parts

- 13108 Sleeve for probe tip (TRA-22)
- CAB-02 Cable for TRA-20, 1.5 m (5 ft)
- CAB-06 Cable for TRA-22, 1.5 m (5 ft)
- CAB-10 Spiral cable for TAD-18, TEM-11
- CAB-30 Cable for TRA-30
- 90022 Battery 1.5 V, alcaline, AA-cell

Machine Condition Analyzer A30

A30 is a machine condition analyzer designed for a reliable preventive maintenance of industrial machines. A30 is available in three versions. With "Basic", measuring results are recorded manually. "Logger" is a data logger and works together with SPM software Condmaster®. "Expert" has all the logger features. In addition, it uses the EVAM[®] method for vibration analysis. A "Basic" version can be upgraded to "Logger" and "Expert".

Measuring techniques	Analyzer A30		
and other features	Basic	Logger	Expert
Shock pulse, LR/HR	•	•	•
Vibration severity, ISO 10816	•	•	•
Temperature measurement	•	•	•
Speed, contact and optical	•	•	•
Continuous reading	•	•	•
Data logging with Condmaster®		•	•
Measuring point identification with CondID®		•	•
Alternative measuring systems		•	•
Selectable comments		•	•
Display of check points		•	•
Long time recording		•	•
Vibration spectrum		1	•
Evaluated vibration analysis (EVAM)			•

Instrument specifications

General features:	language selection, battery test, continuous reading, transducer line test, automatic idle / power off
Temperature range:	0 to 50 °C (32 to 120 °F)
Power supply:	6 x 1.5 V LR6 alkaline cells
Battery life:	power down 1 year, or 5000 typical measurements, or continuous record- ing 50 hours
Size:	255 x 105 x 60 mm (10 x 4.2 x 2.4 in)
Weight:	0.85 kg (1.9 lb.)
Casing / protective cover:	ABS / polyurethane
Keypad:	sealed membrane
Display:	LCD, 4x16 characters, LED backlight, adjustable, automatic on/off
Memory:	typical 500, max. 999 meas. points
Backup, memory/clock:	approx. 24 hours
Meas. point identification:	read and write to CondID®
Reading distance:	max. 50 mm

Shock pulse (SPM® LR/HR)

Measuring range:	–19 to 99 dBsv
Resolution:	1 dBsv
Accuracy:	± 1 dBsv

Vibration severity (ISO 10816)

0.5 to 49.9 mm/s RMS
(0.02 to 2.0 in/s RMS)
0.1 mm/s (0.01 in/s)
± (0.2 mm/s +2% of reading)
3 to1000 Hz

Speed measurement

-	
Measuring range:	10 to 19 999 rpm optical
Measuring distance:	max. 0.6 m (2 ft.)
Resolution:	1 rpm
Accuracy:	\pm (1 rev. + 0.1% of reading)

Temperature measurement

Measuring range:	–50 to +440 °C (–58 to 824 °F)
Resolution:	1 °C (1 °F)

Alternative measuring systems

No. per meas.point:	2
Additional information:	date / time and comments

Long time recording	
Measuring parameters:	SPM, VIB, temperature/speed
Measuring interval:	adjustable 0 to 60 minutes

Vik

Vibration analysis (EVAM [®])		
Window:	Hanning	
Number of samples:	1024 / 2048	
FFT result:	400 / 800 spectrum lines	
Range, resolution at 400 / 800 lines:	3 to 200 Hz, 0.5 / 0.25 Hz 3 to 500 Hz, 1.25 / 0.625 Hz 3 to 1000 Hz, 2 .5 / 1.25 Hz 3 to 2000 Hz, 5.0 / 2.5 Hz 3 to 5000 Hz, 12.5 / 6.25 Hz	
Lines displayed:	15 highest, toggle Hz / cpm	
Lines saved:	1 to 200 highest	

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 225 00 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

Machine Condition Tester T30

Part Numbers

- T30-1 Machine Condition Tester T30 Basic
- T30-2 Machine Condition Tester T30 Logger
- T30-3 Machine Condition Tester T30 Expert
- 13603 Communication module
- CAB-31 Computer cable, male 25 pins- female 25 pins
- CAB-32 Computer cable, male 25 pins- female 9 pins
- CAS-14 Carrying case
- CAS-15 Carrying case with foam insert
- EMD-13 Carrying strap
- FUP-01 Follow-up form for T30, pad of 25 (mm)
- FUP-03 Follow-up form for T30, pad of 25 (inch)

Shock pulse monitoring

- TRA-20 Quick conn. transducer for measuring stud
- TRA-22 Shock pulse transducer, probe assembly
- TRA-30 Shock pulse transd. with quick connector
- EAR-10 Earphone in eardefenders, headset, incl.cable
- EAR-11 Earphone in eardefenders, for helmet, incl. cable
- CAB-07 Cable for remote monitoring, 1.5 m (6 ft)

Vibration monitoring

- TRV-12 Vibration transducer M8 (0-1000 Hz)
- TRV-13 Vibration transducer UNF 1/4"-28 (0-1000 Hz)
- TRV-22 Vibration transducer M8 (0-5000 Hz)
- TRV-23 Vibration transducer UNF 1/4"-28 (0-5000 Hz)
- TRX-16 Magnetic foot for vibration transducer
- TRX-17 Probe for vibration measurement
- VIC-19 Cable for vibration transducer, 1.5 m

Speed monitoring

- TAD-10 Contact adapter for tachometer probe
- TAD-11 Contact center, rpm, short
- TAD-15 Contact center, rpm, long
- TAD-12 Contact wheel, meter / min.
- TAD-13 Contact wheel, yards / min.
- TAD-17 Contact wheel, feet / min.
- TAD-14 Reflecting tape, pad of 5 sheets
- TAD-16 Reflecting tape for thin shafts, 5 sheets
- TAD-18 Tachometer probe with cable

Temperature monitoring

- TEN-10 Temperature probe tip, surface
- TEN-11 Temperature probe tip, liquid
- TEM-11 Temperature probe with cable

Spare parts

- 13108 Sleeve for probe tip (TRA-22)
- CAB-02 Cable for TRA-20, 1.5 m (5 ft)
- CAB-06 Cable for TRA-22, 1.5 m (5 ft)
- CAB-10 Spiral cable for TAD-18, TMM-11
- CAB-30 Cable for TRA-30
- 90022 Battery 1.5 V, alcaline, AA-cell

Machine Condition Tester T30

T30 is a machine condition tester designed for a reliable preventive maintenance of industrial machines. T30 is available in three versions. With "Basic", measuring results are recorded manually. "Logger" is a data logger and works together with SPM software Condmaster[®]. "Expert" has all the logger features. In addition, it uses the EVAM® method for vibration analysis. A "Basic" version can be upgraded to "Logger" and "Expert".

Measuring techniques	٦	ester T3	0
and other features	Basic	Logger	Expert
Shock pulse, dBm/dBc	•	•	•
Vibration severity, ISO 10816	•	•	•
Temperature measurement	•	•	•
Speed, contact and optical	•	•	•
Continuous reading	•	•	•
Data logging with Condmaster®		•	•
Measuring point identification with CondID®		•	•
Alternative measuring systems		•	•
Selectable comments		•	•
Display of check points		•	•
Long time recording		•	•
Vibration spectrum			•
Evaluated vibration analysis (EVAM)			•

Instrument specifications

General features:	language selection, battery test, continuous reading, transducer line test, automatic idle / power off
Temperature range:	0 to +50 °C (32 to 120 °F)
Power supply:	6 x 1.5 V LR6 alkaline cells
Battery life:	power down 1 year, or 5000 typi- cal measurements, or continuous recording 50 hours
Size:	255x105x60 mm (10 x 4.2 x 2.4 in)
Weight:	0.85 kg (1.9 lb)
Casing / protective cover:	ABS / polyurethane
Keypad:	sealed membrane
Display:	LCD, 4x16 characters,LED backlight, adjustable, automatic on/off
Memory:	typical 500, max. 999 meas. points
Backup, memory/clock:	approx. 24 hours
Meas. point identification:	read and write to CondID®
Reading distance:	max. 50 mm

Shock pulse (SPM® dBm/dBc)

Measuring range:	–9 to 99 dBsv
Resolution:	1 dBsv
Accuracy:	± 1 dBsv

Vibration severity (ISO 10816)

Measuring range:	0.5 to 49.9 mm/s RMS (0.02 to 2.0 in/s RMS)
Resolution:	0.1 mm/s (0.01 in/s)
Accuracy:	\pm (0.2 mm/s +2% of reading)
Frequency range:	3 to 1000 Hz
Speed measurement	
Measuring range:	10 to 19 999 rpm optical
Measuring distance:	max. 0.6 m (2 ft.)
Resolution:	1 rpm

	•	
1 rpm		
± (1 rev. + (0.1%	of reading)

Temperature measurement

Accuracy:

Measuring range:	-50 to +440 °C (-58 to +824 °F)
Resolution:	1 °C (1 °F)

Alternative measuring systems

No. per meas.point:	2
Additional information:	date / time and comments

Long time recording

Measuring parameters:	SPM, VIB, temperature/speed
Measuring interval:	adjustable 0 to 60 minutes

Vibration analysis (EVAM®)

Window:	Hanning
Number of samples:	1024 / 2048
FFT result:	400 / 800 spectrum lines
Range, resolution at 400 / 800 lines:	3 to 200 Hz, 0.5 / 0.25 Hz 3 to 500 Hz, 1.25 / 0.625 Hz 3 to 1000 Hz, 2 .5 / 1.25 Hz 3 to 2000 Hz, 5.0 / 2.5 Hz 3 to 5000 Hz, 12.5 / 6.25 Hz
Lines displayed:	15 highest, toggle Hz / cpm
Lines saved:	1 to 200 highest

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 225 00 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

CondID[®], Condition Memory

CondID[®] is a contact free memory tag used for measuring point recognition and condition memory, used with Leonova and the "Logger" and "Expert" versions of Tester T30 and Analyzer A30. It is hung on the adapter cap or strapped in a suitable place on the machine. It should not be mounted flat against a metal surface. A distance of min. 3 mm between metal surfaces and CondID[®] is recommended.

CondID[®] responds to a recognition signal when an SPM datalogger is held close to the tag. It contains all basic data for its measuring point: number, name, and all measuring techniques connected with it, complete with all input data. If the measuring point is already loaded in the datalogger, it will be displayed, else it will be added to those in the data logger memory. CondID[®] also saves the measuring results when the WRITE function is used after taking the readings.

SPM data loggers automatically receive a communication code from Condmaster[®] when a measuring round is downloaded. Using the WRITE function, the data for the displayed measuring point are sent to a tag, thus linking it to the measuring point. On uploading the round to Condmaster[®], the measuring point is marked with a CondID[®] icon. To break the link, one simply removes this icon before downloading the point. The tag can then be linked with another point.

All tags are safeguarded and can only be read with SPM instruments. In addition, the user can set read and write passwords in Condmaster[®]. These passwords are automatically sent to data logger and tag.

The tag memory is 116 characters. If this is exceeded, e.g. by long measuring point names, a menu will show that exceeding data is excluded, starting with truncating the measuring point name. The user can then edit the measuring point data to fit the tag memory.

Specifications:

Memory:	116 bytes
Supported techniques:	dBm/dBc, LR/HR, ISO2372, ISO10816, EVAM/FFT, RPM, user defined 1 & 2 and checkpoints
Resonance frequency:	125 ±6 kHz
Reading distance:	max. 50 mm
Material:	Glass fibre reinforced epoxy
Protection class:	IP66
Operating temperature	–40 to 85 °C
Environment:	Suitable for indoors and outdoors use
Dimensions:	30 x 45 x 2 mm
Part number:	SPM 14489

EU patent no. 0909430, US patent no. 6499349, 6725723.

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 225 00 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

Earphones in eardefenders EAR-10 / EAR-11

EAR-10 and EAR-11 are specially selected earphones, providing excellent sound reproduction even in noisy environments.

- Individually sprung headband wires of stainless sprung steel provide an even distribution of pressure around the ears. Steel headband wires retain their resilience better than plastic through a wide temperature range.
- Low, two-point fasteners and easy height adjustment with no protruding parts.
- Soft, wide foam and fluid-filled sealing rings with built-in pressure-evening channels provide low pressure, effective sealing and ideal comfort.
- Connection cord, 0.75 to 1.4 m, of soft spiral polyurethane with a modular telephone connector.

The earphones with eardefenders are tested and approved in accordance with PPE directive 891686/EEC and EMC directive 89/336/EEC to meet the demands for CE labelling.

Headset, EAR-10

The headset EAR-10 is a mono telephone set with two parallel connected earphones. It has a collapsible headband for convenient storage when you are not using the earphones with eardefenders.

Earphones for helmet, EAR-11

Earphones EAR-11 fit most safety helmets available in the market today. The earphones have standard snap-mounts (Z3E) and are adapted to a specific helmet by a simple manipulation.

To mount the headphone, snap the helmet attachment into the slot on the helmet. Note: The cups can be set in three positions: working position, ventilation position and parking position. When in use, the cups must be placed in working position. Press the wires inward until you hear a click on both sides. Make sure that the cup and the headband wire in working position are not pressing on the helmet lining or the edge of your hardhat so that leakage can occur. Parking position should not be used if the cups are damp inside after an intense period of use.

Continuous Monitoring Systems

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com Technical data are subject to change without notice. ISO 9001 certified. \circledcirc SPM Instrument AB. 71700 B

Intellinova[®] – System Unit INS10

The Intellinova System Unit INS10 is comprised of an industrial enclosure, a Commander Unit, internal cabling and terminals for power supply. Up to four monitoring units can be mounted and are ordered separately. The enclosure, intended for wall mounting, is robust and sealed for use in harsh environments.

The unit has a flange with one cable inlet for eight measuring cables plus two cable inlets for power supply and network connection. It has three blind plugs where additional cable inlets (Pg29) for up to 32 measuring cables can be mounted. Holes for cable inlets intended for digital in- and output connections

Technical specifications, INS10

Design, enclosure:	enamelled steel, IP66
Power supply:	18 to 36 V DC, nom. 24 V DC
Storage temperature:	-20 to +80 °C (-4 to 176 °F)
Relative humidity:	10% to 90% (non-condensing)
Cable inlets:	1 PG29 for 8 measuring cables 2 PG11 for power supply and network connection
Terminals:	7 terminal blocks for connection of power supply
Dimensions (w x h x d):	500 x 600 x 210 mm
	(19.7 x 23.6 x 8.3 inches)
Mounting holes:	(19.7 x 23.6 x 8.3 inches) 4 with diameter 8.5 mm, spacing (w x h) 460 x 560 mm
Mounting holes: Weight:	4 with diameter 8.5 mm, spacing (w x h) 460 x 560 mm approx. 21 kg (46 lbs)

have to be drilled. The DIN rail has terminal blocks and cabling for connection of power supply. The unit has an earth rail (DIN) where the measuring cable shields should be connected. The unit is equipped with plastic cable channels and status indicators on the lid. Power supply unit, accessories for DIN rails, internal cabling and cable inlets are ordered separately.

Technical specifications for the Commander Unit are stated on data sheet TD-271. The various types of monitoring units are described on the data sheets TD-272 to TD-275. Cable inlets and accessories for DIN rails are described on TD-289.

Monitoring Units

INB80	Bearing Monitoring Unit for SPM transducers of type 40000 (TD-272)
INB82	Bearing Monitoring Unit for SPM transducers of type 42000 (TD-272)
INV80A	Vibration Monitoring Unit, screw terminals (TD-273)
INAI10	Analog Monitoring Unit (TD-274)
INAO80	Analog Output Unit (TD-275)

Options

NO11	Power	supply	unit,	18 W	(TD-288)
------	-------	--------	-------	------	----------

- INO12 Power supply unit, 50 W (TD-288)
- INO13 Internal cabling with terminal blocks for digital outputs, 3 channels
- INO14 Internal cabling with terminal blocks for digital inputs, 4 channels
- INO16 Relay for external alarm, 2 poles (TD-290)
- INO17 Key Phasor Interface, 2 channels
- 81325 Mounting braces, 4 pcs

Intellinova® – Commander Unit INC40

The Intellinova Commander Unit INC40 is a flexible and modular platform which controls and communicates with the monitoring units for continuous monitoring of machine condition. Up to four monitoring units with normally eight channels each can be plugged into the Commander Unit. Monitoring units are ordered separately and are described on the technical data sheets TD-272 to TD-275.

The Commander Unit is equipped with multiplexing measuring logic, alarm, storing and analysis logic. It is connected via standard Ethernet in a LAN network.

The unit has four digital outputs for connection to PLC or via external relays to machine stop, external warning lamp, etc. Up to four RPM transducers can be connected and linked to measuring assignments set up in Condmaster®Nova.

The communication program LinX transmits measuring assignments to and reads the results from the Commander Unit, and controls the measuring operations, data processing and storage. A service laptop with the Field Support Software (FSS) can be connected for service and setup via an Ethernet port. Data access to process and control systems can be implemented via OPC client/server technology. The unit can be used off-line and is equipped with SD memory card for buffering and back-up.

The measuring assignments are set up in Condmaster®Nova running under Windows. Condmaster also handles portable SPM dataloggers and existing SPM online systems. SQL Server is used as database handler.

Technical data

Monitoring units:	sockets for 4 monitoring units
Digital/RPM inputs:	4 channels
RPM transducer type:	proximity switches, supply 12 V DC
RPM measuring range:	10 – 120 000 rpm
Digital output:	2 status and 4 user configurable
Memory:	SD card, 2 GB
LAN interface:	Ethernet TCP/IP, 10/100 Mbps
Power supply:	18 to 36 V DC, nom. 24 V DC
Power consumption:	max. 21 W (6 W available for rpm transducers), typical 3 W without measuring units and rpm transducers
Operating temperature:	0 to +60 °C (32 to 140 °F)
Storage temperature:	-20 to +80 °C (-4 to 176 °F)
Relative humidity:	10% to 90% (non-condensing)
Dimensions (w x h x d):	390 x 207 x 40 mm (15.4 x 8.2 x 1.5 inches)
Weight:	approx. 750 g without monitoring units

Part numbers

INC40 Commander Unit incl. mounting screws with spacers and 2 screw terminals for power supply and status indicators

Accessories

- 93384 Screw terminal, 4 pins, for connection of digital inputs/RPM and digital outputs
- 90419 SD memory card, 2 GB

SPM SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

Technical data are subject to change without notice. ISO 9001 certified. © Copyright SPM 2008-09. TD-271 B

Intellinova[®] – Bearing Monitoring Unit

The Bearing Monitoring Unit is a part of the Intellinova System and has eight channels for continuous monitoring of bearing condition. It measures shock pulses according to the True SPM method and supports SPM Spectrum. The unit is simply plugged into the socket in the Intellinova Commander Unit. Measuring methods, measuring time, alarm limits, alarm delay etc. are set up in Condmaster®Nova.

Four versions of the Bearing Monitoring Unit are available. INB80 and INB82 have input connectors for coaxial cables. INB80 is intended for shock pulse transducers of type 40000 (cable length max. 4 m) and INB82 is intended for shock pulse transducers of type 42000 (cable length max. 100 m).

INB80T and INB82T have input connectors for twisted pair cables. INB80T is intended for shock pulse transducers of type 40000 (cable length max. 4 m) and INB82T is intended for shock pulse transducers of type 42000 (cable length max. 100 m).

Signal processing

The resonance frequency of the SPM shock pulse transducer, calibrated to 32 kHz, constitutes the ideal carrier wave for transients caused by shocks. The output of this transducer is the same type of demodulated signal produced by 'enveloping', with this important difference: both frequency and amplitude response of the SPM transducer are precisely tuned, so there is no need to find uncertain and shifting machine resonances to get a signal.

Intellinova measures the shock amplitude by a shock pulse measurement with the dBm/dBc or the LR/HR method and the results are bearing condition data for condition evaluation. The measurement also produces a time record that is subjected to a Fast Fourier Transform (FFT). The resulting spectrum is used mostly for pattern recognition. Spectrum line amplitudes are influenced by too many factors to be reliable condition indicators, so all condition evaluation is based on the dBm or the HR values.

Technical data

Measuring methods: Measuring channels: Measuring range: Measuring time:

Frequenc

Number Measurer Spectrum Averages

Frequenc Saving op Amplitud

Scaling: Zoom. Pattern re

Input con

Transduc Design:

Power co Operatin Storage t Relative h Mounting

Dimensio Weight:

Part numbers

INB80 Bearing Monit. Unit, transducers type 40000/coax cable Bearing Monit. Unit, transducers type 42000/coax cable INB82 **INB80T** Bearing Monit. Unit, transducers type 40000/pair cable INB82T Bearing Monit. Unit, transducers type 42000/pair cable 12775 Connector for coaxial cable (INB 80/82)

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

Technical data are subject to change without notice. ISO 9001 certified. © Copyright SPM 2009-01. TD-272 B

	approx. 20 sec. LR/HR
cy range:	0 to 100, 200, 500, 1000, 2000, 5000, 10000, 20 000, 40 000 Hz
of spectrum lines:	400, 800, 1600, 3200, 6400, 12800
ment windows:	Rectangle, Hanning, Hamming, Flat Top
n types displayed:	linear, power
:	time synchronous, FFT linear, FFT peak-hold
y units:	Hz, CPM
otions for spectrum:	full spectrum, peaks only
e scale unit:	S _D (Shock Distribution), S _L (Shock Level)
	linear or logarithmic X and Y axis
	true FFT zoom, visual zoom
ecognition:	bearing frequencies and optional patterns highlighted in the spectrum. Automatic configuration of bearing symptoms linked to ISO bearing no.
inectors:	for coaxial cables on INB 80/82, for pair cables on INB 80T/82T
er line test:	TLT test
	encapsulated circuit board, not protected
nsumption:	max. 1.5 W, typical 0.8 W
g temperature:	0 to +60 °C (32 to 140 °F)
emperature:	-20 to +80 °C (-4 to 176 °F)
numidity:	10% to 90% (non-condensing)
g:	plug-in connector and holding screws for attachment in INC40
ons:	212 x 70 x 37 mm
	approx. 200 g

dBm/dBc, LR/HR, SPM Spectrum

approx. 2 sec. per channel dBm/dBc,

-9 to 99 dBsv , -19 to 99 LRHR

8, multiplexing

Intellinova® – Vibration Monitoring Unit INV80A

The Vibration Monitoring Unit INV80A is a part of the Intellinova System and has eight channels for continuous monitoring of vibrations. The unit is simply plugged into the socket in the Intellinova Commander Unit. Measuring time, alarm limits, alarm delay etc. are set up in Condmaster®Nova.

It supports broad band vibration measurement, both ISO 2372 and the more recent ISO 10816, the most cost-efficient method for the diagnosis of general machine condition.

It also supports FFT with symptoms and EVAM (Evaluated Vibration Analysis Method). The EVAM method generates condition parameters describing various aspects of machine vibration, vibration spectra where significant line patterns are highlighted and evaluated plus machine specific condition codes and condition values, based on a statistical evaluation of the condition parameters and symptom values.

For each measuring point, the user can make an individual selection and define the type of data best suited for the surveillance of an individual machine.

Two channel simultaneous vibration monitoring requires that either the measuring technique 'FFT with symptoms' or 'EVAM' is active in Condmaster Nova. This type of measurement allows the user to study machine movement in two dimensions by observing the difference of the phase angles measured on the two channels.

Orbit analysis is a vibration measurement function offered with the Vibration Monitoring Unit. The resulting orbit graph shows the movement of the shaft's centerline and is used to detect failures like rubs, unbalance, misalignment or oil whip on machinery with journal bearings. Required are two channel simultaneous vibration measurement and two transducers placed at an angle of 90° to each other, plus a trigger signal from a tachometer probe.

Technical data

Measuring methods:	ISO 2372, ISO10816, FFT with symptom, EVAM, 2-channel vib, orbit
Measuring channels:	8, multiplexing, 2 simultaneous
Design:	encapsulated circuit board, not protected
Input connectors:	screw terminals
Power consumption:	max. 1.5 W, typical 0.8 W
Operating temp.:	0 to +60 °C (32 to 140 °F)
Storage temp.:	-20 to +80 °C (-4 to 176 °F)
Relative humidity:	10% to 90% (non-condensing)
Mounting:	plug-in connector and holding screws for attachment in Commander Unit INC40
Dimensions:	212 x 70 x 37 mm
Weight:	approx. 200 g
Vibration analysis	
Freq. limit, lower:	0.5, 2, 10 or 100 Hz
Freq. limit, upper:	100, 200, 500, 1000, 2000, 5000, 10 000, 20 000, 40 000 Hz
Envelope HP filters:	100, 200, 500, 1000, 2000, 5000, 10000 Hz
Measurem. windows:	Rectangle, Hanning, Hamming, Flat Top
Averages:	time synch, FFT linear, FFT exponential, FFT peak-hold
Spectrum lines:	400, 800, 1600, 3200, 6400, 12800
Transducer types:	Vibration transducer SLD144 or IEPE (ICP®) type transducers with voltage output
Orbit analysis	
Orders:	1 to 5, default 1
Filter types:	None, band pass, low pass
Signal unit:	DISP, VEL, ACC
Measuring time:	1 to 25 revolutions
Transducer types:	Buffered outputs from API670 approved

Buffered outputs from API670 approved protection systems, alt. transducers SLD144 or IEPE (ICP®) type transducers with voltage output

Intellinova® – Analog Monitoring Unit INAI10

The Analog Monitoring Unit INA110 is a part of the Intellinova System and has ten channels for continuous monitoring of analog signals. It measures 0 to 25 mA on eight channels and 1 to 10 V DC on two channels.

The unit is simply plugged into the socket in the Intellinova Commander Unit. Measuring units, range, quantities, alarm limits etc. are set up in Condmaster®Nova.

Technical data

Current inputs:	8 channels, multiplexing
Voltage inputs:	2 channels, multiplexing
Input resistance:	current 100 Ω , voltage 86 k Ω
Measuring time:	approx. 1 sec. per channel
Measurement range:	0 to 25 mA, 0 to 10 V DC
Resolution:	0.01 mA, 0.01V
Meas. uncertainty:	± (1% +0.1 mA)
Design:	encapsulated circuit board, not protected
Input connectors:	screw terminal
Power consumption:	max. 0.5 W, typical 0.2 W
Operating temperature:	0 to +60 °C (32 to 140 °F)
Storage temperature:	-20 to +80 °C (-4 to 176 °F)
Relative humidity:	10% to 90% (non-condensing)
Mounting:	plug-in connector and holding screws for attachment in Commander Unit
Dimensions:	212 x 70 x 37 mm
Weight:	approx. 200 g

Intellinova® – Analog Output Unit INAO80

The Analog Output Unit INAO80 is a part of the Intellinova System and has eight current outputs. The unit is simply plugged into the socket in the Intellinova Commander Unit.

The unit converts the measuring values from the monitoring units to analog signals 4 - 20 mA for connection to PLC, DCS or other control systems.

Technical data

8
4 to 20 mA
18 to 36 V DC, nom. 24 V DC
screw terminal
encapsulated circuit board, not protected
0.1W from INC40 and $2W$ from external power supply
0 to +60 °C (32 to 140 °F)
-20 to +80 °C (-4 to 176 °F)
10% to 90% (non-condensing)
plug-in connector and holding screws for attachment in Commander Unit
212 x 70 x 37 mm
approx. 200 g

Part numbers

- INO10 Blind flange for Intellinova enclosure
- 15881 Clamping yoke for earth rail, DIN, cable 3-8 mm
- 15882 Clamping yoke for earth rail, DIN, cable 4-13,5 mm
- 15883 Clamping yoke for earth rail, DIN, cable 10-20 mm
- 15884 Clamping yoke for earth rail, DIN, cable 15-32 mm
- 15808 Cable inlet, Pg7, for cable 3-6.5 mm, IP68, brass/ nickel-plated, Neoprene sealing
- 15885 Cable inlet, Pg11, for cable 5-10 mm, IP68, brass/ nickel-plated, Neoprene sealing

- 82435 Cable inlet, Pg 29, for 8 measuring cables diam. 5 mm, IP65, brass/nickel-plated, PVC sealing
- 93380 Terminal block for DIN rail, nom. area 2.5 mm²
- 93318 Switch block for DIN rail, nom. area 2.5 mm²
- 90307 End section for switch and terminal block
- 93319 End stop for DIN rail
- 93384 Screw terminal, 4 pins, for digital in- and outputs on Commander Unit

Intellinova® – Power Supply Units

The power supply units in the Intellinova system are intended for mounting on standard DIN rail. INO11 is used to supply a standard Intellinova System Unit with a power consumption of max. 18 W.

Technical specifications, INO11

	•		•
Rated input voltage:	100 to 240 V AC (85 to 265 VAC)	Rated input voltage:	100 to 240 VAC (85 to 264 VAC)
Frequency:	50/60 Hz	Frequency:	50/60 Hz
Power rating:	18 W	Power rating:	50 W
Rated otput voltage:	+ 24 V DC	Rated output voltage:	+ 24 V DC
Voltage adjustment range:	-10% to +20%	Voltage adjustment range	e: -20% to +20%
Output current:	750 mA	Rated output current:	2.2 A
Protection:	input fuse, over load, over voltage, output short circuit	Protection:	input fuse, over load, over voltage
		Ambient temperature:	-10 to +70 °C
Ambient temperature:	-10 to +50 °C	Storage temperature:	-25 to +65 °C (with no icing or
Storage temperature:	-25 to +85 °C (with no icing or condensation)	5 5	condensation)
		Relative humidity:	30% to 85% RH
Relative humidity:	20% to 95% RH	Dimensions (w x h x d):	38.6 x 90 x 153 mm
Dimensions (w x h x d):	22.5 x 90 x 115 mm	Approved standards:	UL: UL508 (Listing), UL60950-1.
Approved standards:	UL/cUL (UL508/UL1310 Listed, Class 2 Power Supply), TUV (EN60950), CE (EN5008-1/ EN55022 for EMI, EN50082-1/ EN55024 for EMS), FCC (Class B)		UL1604 (Class I/Division 2, Listing). CSA: cUL: C22.2 No.14, No.213 (Class I/Division 2), cUR: No. 60950- 1. EN: EN50178, EN60950-1. SELV (EN60950-1). According to VDE0160

blocks for DIN rail.

Technical specifications, INO12

Technical data are subject to change without notice. ISO 9001 certified. ©Copyright SPM 2008-08. TD-288 B

INO12 is required when supplying a System Unit and optional

equipment with power consumption up to max. 50 W. The

units are delivered complete with internal cabling and terminal

Intellinova[®] – Relay INO16

INO16 is a slim relay of plug-in type mounted in a socket for DIN rail mounting. It has a LED indicator showing mechanical operation and a test button (A). The relay is delivered complete with socket and internal cabling for Intellinova System Unit.

Technical specifications, INO16

Poles:	2
Rated coil voltage:	24 VDC
Rated coil current:	21.6 mA
Power consumption:	0.53 W
Load:	resistive load (cos φ =1), inductive load (cos φ =0.4; L/R=7 ms)
Rated load:	resistive; 5A/250 VAC, 5A/30 VDC inductive; 2A/250 VAC, 3A/30 VDC
Rated carry current:	5 A
Max. switching voltage:	380 VAC, 125 VDC
Max. switching current:	5 A
Max. switching power:	resistive; 1250 VA, 150 W inductive; 500 VA, 90 W
Amb. temperature:	-40° to 70° C (no condensation)
Amb. humidity:	5% to 85% (operating)
Dimensions:	85.5 x 67 x 16 mm
Mounting:	DIN rail
Approved standards:	UL508 (File No. E41643), IEC/VDE (EN61810), CSA 22.2 No.0, No.14 (File No. LR311928), LR

Intellinova[®] – Key Phasor Interface INO17

INO17 is a tachometer sensor interface ideal for connecting the Intellinova online system to buffered outputs of a machine protection system. It has two input channels with common 12V power supply from Intellinova. The interface has three main functions:

1. It converts signals from proximity probes (Eddy current) via buffered outputs of a machine protection system. The interface will automatically find the voltage threshold for the various sensors.

2. When using sensors with high output frequency the 'DIV' output can be used for division of the frequency to 1/10 of the input signal. Additional division to 1/100 can be made by connecting both channels in series.

3. When the interface is connected to an open collector output the 'PULL' input can be used to ensure the trigger level and filter out noise.

INO17 is intended for DIN rail mounting and is delivered with internal cabling for connection to the terminal blocks for digital input (option) in the Intellinova System Unit.

Technical specifications

Power supply:	12 VDC
Power consumption:	0.3 W
Pulse frequency:	max. 100 kHz at 50% duty cycle
Pulse amplitude:	min. 2V
Input pulse:	low level –33 V to +2.5 V
	high level –22 V to +33 V
Amb. temperature:	0° to 60° C (no condensation)
Amb. humidity:	10% to 90% (operating)
Dimensions:	102 x 23 x 75 mm
Mounting:	DIN rail 35 mm

Technical data are subject to change without notice.

Fault indication:

Transducer type:

Machine Guard MG4-1 is a stand-alone measuring unit for continuous monitoring of machine vibration on one channel. It measures vibration severity (true RMS value of vibration velocity) according to ISO 10816.

Machine Guard MG4-1 provides:

- Two programmable alarm levels and status display • (green - yellow - red light)
- Display of measured value with continuous updates
- Analog output current 4 20 mA with programmable range or complete data on LAN (Modbus network using RTU)
- Relays 250 V (1) and 125 V (2) with programmable alarm levels.

MG4-1 has a casing for wall mounting, IP65. It can be supplied with mains power or be connected to a PLC. Measuring time, alarm levels, alarm delay and the channel/relay combinations are programmed, using the push buttons on the front panel.

The following options are selected on ordering the unit:

Power supply:

- 230 Vac, 115 Vac or 15 to 30 Vac/Vdc
- Vibration channel:
- Lower frequency range 3, 10 or 100 Hz
- Upper frequency range 1000 or 2000 Hz
- Modification for vibration transducers without pre-٠ amplifier (TRV-01, TRV-12/13)

As an option the MG4 can be equipped with a RS-485 port for sending data via a LAN network. MG4 units equipped for network have no analog outputs.

Technical specifications

1
4-20 mA, selective range, no galvanic separation
250 Vac, 5 A, 1250 VA 125 Vac, 1 A, 60 VA, 150 Vdc, 1 A, 30 W
230 Vac, 115 Vac or
15 to 30 Vac/Vdc
max. 6 VA
0° to 50° C (32° to 122° F)
Polycarbonate/PVC, IP65
Silver plated brass, 10–15 μ
LCD, 4 x 16 characters, back- lighted
Green, yellow, red LED
200 x 144 x 77 mm
1060 grams
0.5 to 49.9 mm/s RMS (0 to 1.9 inch/s RMS)
0.1 mm/s (0.01 inch/s)
3, 10, or 100 Hz
1000 or 2000 Hz
Programmable 1 to 15 s
2, programmable
0 to 600 seconds, steps of 2 s

Transducer line test for short and open circuit

SLD122 or TRV-18/19/20/21 with isolated installation foot TRX-18/19

Machine Guard MG4-2 is a stand-alone measuring unit for continuous monitoring of machine vibration on two channels. It measures vibration severity (true RMS value of vibration velocity) according to ISO 10816.

Machine Guard MG4-2 provides:

- Two programmable alarm levels per channel and status display (green - yellow - red light)
- Display of measured value with continuous updates
- Analog output current 4 20 mA with programmable • range or complete data on LAN (Modbus network using RTU)
- Relays 250 V (1) and 125 V (4) with programmable alarm levels.

MG4-2 has a casing for wall mounting, IP65. It can be supplied with mains power or be connected to a PLC. Measuring time, alarm levels, alarm delay and the channel/relay combinations are programmed, using the push buttons on the front panel.

The following options are selected on ordering the unit:

Power supply:

230 Vac, 115 Vac or 15 to 30 Vac/Vdc

Vibration channel:

- Lower frequency range 3, 10 or 100 Hz
- Upper frequency range 1000 or 2000 Hz
- Modification for vibration transducers without pre-٠ amplifier (TRV-01, TRV-12/13)

As an option the MG4 can be equipped with a RS-485 port for sending data via a LAN network. MG4 units equipped for network have no analog outputs.

Technical specifications

rechnical specifica	uons
Vibration channels:	2, multiplexing
Analog outputs (2):	4-20 mA, selective range, no galvanic separation
Main relay (1):	250 Vac, 5 A, 1250 VA
Secondary relays (4):	125 Vac, 1 A, 60 VA,
Power supply:	150 Vdc, 1 A, 30 W 230 Vac, 115 Vac or 15 to 30 Vac/Vdc
Power consumption:	max. 6 VA
Temperature range:	0° to 50° C (32° to 122° F)
Casing:	Polycarbonate/PVC, IP65
Input connectors:	Silver plated brass, 10–15 μ
Display screen:	LCD, 4 x 16 characters, back- lighted
Status display:	Green, yellow, red LED
Dimensions:	200 x 144 x 77 mm
Weight:	1070 grams
Vibration channel (VIB)	
Measuring range:	0.5 to 49.9 mm/s RMS (0 to 1.9 inch/s RMS)
Resolution:	0.1 mm/s (0.01 inch/s)
Frequency, lower limit:	3, 10, or 100 Hz
Frequency, upper limit:	1000 or 2000 Hz
Measuring time:	Programmable 1 to 15 s
Alarm limits:	2, programmable
Alarm delay:	0 to 600 seconds, steps of 2 s
Fault indication:	Transducer line test for short and open circuit

Transducer type: SLD122 or TRV-18/19/20/21 with isolated installation foot

TRX-18/19

Machine Guard MG4-12 is a stand-alone measuring unit for continuous monitoring of machine vibration (one channel) and bearing condition (two channels). It measures vibration severity (true RMS value of vibration velocity) according to ISO 10816 and shock pulses according to the true SPM method.

Machine Guard MG4-12 provides:

- Two programmable alarm levels per channel and status display (green - yellow - red light)
- Display of measured value with continuous updates
- Analog output current 4 20 mA with programmable range or complete data on LAN (Modbus network using RTU)
- Relays 250 V (1) and 125 V (4) with programmable alarm levels.

MG4-12 has a casing for wall mounting, IP65. It can be supplied with mains power or be connected to a PLC. Measuring time, alarm levels, alarm delay and the channel/relay combinations are programmed, using the push buttons on the front panel.

The following options are selected on ordering the unit:

Power supply:

• 230 Vac, 115 Vac or 15 to 30 Vac/Vdc

Vibration channel:

- Lower frequency range 3, 10 or 100 Hz
- Upper frequency range 1000 or 2000 Hz
- Modification for vibration transducers without preamplifier (TRV-01, TRV-12/13)

Bearing channel:

dBm/dBc or LR/HR technique

As an option the MG4 can be equipped with a RS-485 port for sending data via a LAN network. MG4 units equipped for network have no analog outputs.

Technical specifications

reennear speerne	
Vibration channels:	1
SPM channels:	2, multiplexing
Analog outputs (3):	4-20 mA, selective range,
	no galvanic separation
Main relay (1):	250 Vac, 5 A, 1250 VA
Secondary relays (4):	125 Vac, 1 A, 60 VA,
	150 Vdc, 1 A, 30 W
Power supply:	230 Vac, 115 Vac or
	15 to 30 Vac/Vdc
Power consumption:	max. 6 VA
Temperature range:	0° to 50° C (32° to 122° F)
Casing:	Polycarbonate/PVC, IP65
Input connectors:	Silver plated brass, $10-15 \mu$
Display screen:	LCD, 4 x16 characters, back- lighted
Status display:	Green, yellow, red LED
Dimensions:	200 x 144 x 77 mm
Weight:	1140 grams
Vibration channel (VIB)	
weasuring range:	0.5 to 49.9 mm/s RIVIS (0 to 1.0 inch/s RIVIS)
Pacalution	(0.10 nm/s (0.01 inch/s))
Fraguanay lawar limit	2 10 or 100 Hz
Frequency, lower limit:	
Measuring times	
Alarma linaitar	
Alarm limits:	2, programmable
Alarm delay:	U to 600 seconds, steps of 2 s
Fault Indication:	and open circuit
Transducar type:	SI D122 or TPV 18/19/20/21
nansoucer type.	with isolated installation foot
	TRX-18/19
Bearing channel (SPM)	
SPM method:	dBm/dBc or LR/HR, evaluated
Measuring range:	0 to 99 dBsv
Resolution:	1 dBsv
Alarm limits:	2. programmable
Alarm delay:	0 to 600 seconds, steps of 2 s
Fault indication:	Transducer line test of
	measuring circuit quality
Transducer type:	SPM 40000 or 42000

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com Technical data are subject to change without notice. ISO 9001 certified. © Copyright SPM 2006-10. TD-143 B

CE

Machine Guard MG4-22 is a stand-alone measuring unit for continuous monitoring of machine vibration (two channels) and bearing condition (two channels). It measures vibration severity (true RMS value of vibration velocity) according to ISO 10816 and shock pulses according to the true SPM method.

Machine Guard MG4-22 provides:

- Two programmable alarm levels per channel and status display (green - yellow - red light)
- Display of measured value with continuous updates
- Analog output current 4 20 mA with programmable range or complete data on LAN (Modbus network using RTU)
- Relays 250 V (1) and 125 V (4) with programmable alarm levels.

MG4-22 has a casing for wall mounting, IP65. It can be supplied with mains power or be connected to a PLC. Measuring time, alarm levels, alarm delay and the channel/relay combinations are programmed, using the push buttons on the front panel.

The following options are selected on ordering the unit:

Power supply:

230 Vac, 115 Vac or 15 to 30 Vac/Vdc

Vibration channel:

- Lower frequency range 3, 10 or 100 Hz
- Upper frequency range 1000 or 2000 Hz
- Modification for vibration transducers without pre-٠ amplifier (TRV-01, TRV-12/13)

Bearing channel:

dBm/dBc or LR/HR technique

As an option the MG4 can be equipped with a RS-485 port for sending data via a LAN network. MG4 units equipped for network have no analog outputs.

Technical specifications

Vibration channels:	2, multiplexing
SPM channels:	2, multiplexing
Analog outputs (4):	4-20 mA, selective range, no galvanic separation
Main relay (1):	250 Vac, 5 A, 1250 VA
Secondary relays (4):	125 Vac, 1 A, 60 VA,
Demonstrum	150 Vdc, 1 A, 30 W
Power supply:	
Power consumption.	
Tomporature range:	n_{A}^{0} to 50° C (22° to 122° E)
Cosing:	Polycorbonato/PVC IP65
Lasing.	Silver plated brass 10, 15 u
Display screen:	Silver plated blass, $10-13 \mu$
Display screen.	lighted
Status display:	Green, vellow, red LED
Dimensions:	200 x 144 x 77 mm
Weight:	1150 grams
5	3 3 4
Vibration channel (VIB)	
Measuring range:	0.5 to 49.9 mm/s RMS
Resolution:	0.1 mm/s (0.01 inch/s)
Frequency, lower limit:	3, 10, or 100 Hz
Frequency, upper limit:	1000 or 2000 Hz
Measuring time:	Programmable 1 to 15 s
Alarm limits:	2, programmable
Alarm delay:	U to 600 seconds, steps of 2 s
Fault indication:	and open circuit
Transducer type:	SLD122 or TRV-18/19/20/21
	with isolated installation foot
	1KA-10/19
Bearing channel (SPM)	
SPM method:	dBm/dBc or LR/HR, evaluated
Measuring range:	U to 99 dBsv
Resolution:	1 dBsv
Alarm limits:	2, programmable
Alarm delay:	U to 600 seconds, steps of 2 s
Fault indication:	iransducer line test of measuring circuit quality
Transducer type:	SPM 40000 or 42000

CE

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

Machine Guard MG4-REF11 is a measuring unit for continuous monitoring of mechanical shocks arising when the disc segments in a refiner touches each other (one channel) and machine vibration (one channel). It measures vibration severity (true RMS value of vibration velocity) according to ISO 2372. It provides, for each channel:

- Status display (green red light) and system fault (yellow light)
- Display of measured value with continuous updates
- Analog output current 4 20 mA with programmable range
- Relay action at two programmable alarm levels (red alarm)

A shock pulse transducer is fixed to the refiner housing so that mechanical shocks from the segments are transmitted to the transducer with a minimum of reduction. The transducer signal is transmitted via the cables to the MG4-REF11 electronics which analyse the frequency of occurrence and magnitude.

When the unit is in its normal measuring mode, the green - red status light shows the status of the channel with the worst condition. The yellow status light indicates system fault. The display shows the measuring result on both channels.

During normal operation the instrument reading is 20 to 60 %. If the discs run together, corresponding to an instrument reading above 70 %, a relay is activated and a signal is given to open the disc gap.

The measuring results can be put on any of the available analog output channels and connected with any of the relays.

MG4-REF11 has a casing for wall mounting, IP65. It can be connected to a PLC via the analog outputs. Measuring time, alarm levels, alarm delay and the channel/relay combinations are programmed, using the push buttons on the front panel. Power supply, 230 Vac or 115 Vac, and type of shock pulse transducer are selected on ordering the unit.

Technical speci	fications
Vibration monitoring	ı: 1 channel
Shock pulse monitor	ing: 1 channel
Analog outputs (4):	4-20 mA, selective range, VIB (1), Shock Level (1), dBc (1), dBm (1), no galvanic separation
Main relay (1):	250 Vac, 5 A, 1250 VA
Secondary relays (4):	125 Vac, 1 A, 60 VA, 150 Vdc, 1 A, 30 W
Power supply:	230 Vac or 115 Vac
Power consumption:	max. 6 VA
Temperature range:	0° to 50° C (32° to 122° F)
Casing:	Polycarbonate/PVC, IP65
Input connectors:	TNC, silver plated brass, $10-15 \mu$
Display screen:	LCD, 4x16 characters, backlighted
Status display:	Green, yellow, red LED
Dimensions:	200 x 144 x 77 mm
Weight:	1140 grams
Vibration channel (N	/IB) 0 E to 40.0 mm /s DMS
weasuring range:	(0.5 to 49.9 mm/s RWS)
Resolution:	0.1 mm/s (0.01 inch/s)
Frequency range:	10 to 1000 Hz
Measuring time:	Programmable 1 to 15 sec
Alarm limits	2 programmable A1 (max) and
	A2 (min)
Alarm delay:	0 to 600 seconds, steps of 2 s
Fault indication:	Transducer line test for short
	and open circuit
Transducer type:	SLD122 or TRV-20/21 with
	isolated installation foot
	TRX-18/19
Shock pulse channe	I (SPM)
SPM method:	dBm/dBc
Measuring time:	approx. 0.4 s
Measuring range:	0 to 99 dBsv
Resolution:	1 dBsv
Alarm limits:	2, programmable A1 (max) and A2 (min)
Alarm delay:	0 to 600 seconds, steps of 2 s
Fault indication:	Transducer line test of measuring

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com CE

circuit quality, every 2 min.

SPM 42000

Transducer type:

CMM System - Encapsulated Modules

The CMM System

The CMM system is a permanently installed, continuous condition monitoring system, consisting of transducers, converters, and combined display and control modules.

The transducers measure bearing condition (shock pulse method), vibration severity (ISO 10816), and temperature.

The converters, with or without display of measured value, transform the shock pulse and vibration transducer signals into 4 to 20 mA analog signals. The temperature transmitter has an output of 4 to 20 mA.

The display modules (DMM) have two input channels for 4 to 20 mA, and two relay outputs (24 V/100 mA).

Display Modules

- DMM-12 2 channels, 4-20 mA in, 2 relays (24 V/100 mA), for 35 mm DIN rail
- DMM-13 2 channels, 4-20 mA in, 2 relays (24 V/100 mA), in cabinet IP 65, 1 x Pg11 cable inlet
- DMM-14 Identical with DMM-13 but with 1 x Pg11 plus 2 x Pg7 cable inlets

Vibration Monitoring Modules

VMM-14	1 channel, 10-1000 Hz
VMM-15	1 channel - 3 -1000 Hz
VMM-20	2 channels, 10-1000 Hz
VMM-21	2 channels, 3 -1000 Hz
VDM-14	1 channel with display, 10-1000 Hz
VDM-15	1 channel with display, 3 -1000 Hz
VDM-20	2 channels with display, 10-1000 Hz
VDM-21	2 channels with display, 3 -1000 Hz

Bearing Monitoring Modules

BMM-40	2 channels, for transducer 40000
	(max. cable length L = 4 m)
BMM-42	2 channels, for transducer 42000
	(max, cable length L = 100 m)

- BDM-40 2 channels with display, for transducer 40000 (max. cable length L = 4 m)
- BDM-42 2 channels with display, for transducer 42000 (max. cable length L = 100 m)

Transducers and cables

SLD121A	Vibration transducer, M8
SLD121E	Vibration transducer, UNF 1/4"
TRV-18	Vibration transducer, M8
TRV-19	Vibration transducer, UNF 1/4"
TRX-18	Insulation foot for vibration transducer TRV-18
TRX-19	Insulation foot for vibration transducer TRV-19
40000	Shock Pulse Transducer
42000	Shock Pulse Transducer with matching unit
45011-L 46050-L	Coaxial cable with connectors, TNC-TNC, temp. range -10° to +70°C (L = length in meters) Coaxial cable with connectors, TNC-SMB, temp. range -10° to +70° C (L = length in meters)
TMM-12 TMM-13 46098-L 46099-L	 4-20 mA Temperature transmitter, M8 4-20 mA Temperature transmitter, UNC 5/16" Twisted pair cable for TMM-12/13, -65 to 200°C Twisted pair cable for TMM-12/13, -40 to 90°C
Accesso	ries
14141	Cabinet with mounting rails for DMM-12

14141	Cabinet with mounting rails for DMM-12
14142	Mounting rail, 35 mm DIN, length 357 mm
OMR-10	Power supply module for 35 mm DIN rail,
	15 W, 24 V, 0.6 A

CMM System - Bearing Monitoring Module BMM

Bearing Monitoring Modules BMM are converters with two channels which output 4-20 mA proportional to the unnormalized maximum value of the shock pulses measured on a bearing. The measuring time is approximately 1 second per channel. The measuring range for both channels together can be jumper set to either 0 to 80 or 20 to 100 dBsv.

The 4-20 mA current can be supplied to an display module of type DMM, to a PLC or to a computer controlled monitoring system (e.g. SPM's CMS System).

There are two versions:

BMM-40 for shock pulse transducer type 40000. The coaxial cable used between transducer and module is max. 4 m.

BMM-42 for shock pulse transducer type 42000. The coaxial cable used between transducer and module is max. 100 m.

The modules are wall mounted and supplied with 12 to 24VDC. A transducer line fault is indicated by an output of \leq 1 mA. This output can be changed to 4 mA by a jumper setting, which is common for both channels.

Signal conversion

Technical data

Measuring method:	SPM dBm, unnormalized maximum value
Measuring channels:	2, multiplexing
Measuring range 1:	0 to 80 dBsv (5 dB /mA, 0.2 mA/dB)
Measuring range 2:	20 to 100 dBsv (6.25 dB/mA, 0.16 mA/dB)
Measuring time:	approx. 1 second per channel
Transducer type:	SPM 40000 (BMM-40), SPM 42000 (BMM-42)
Transducer cable:	coaxial cable, SPM 90005-L, or SPM 90267-L (L = length in m)
Analog output:	4 to 20 mA, no galvanic separation
Fault indication:	≤ 1 mA out = interrupted or faulty transducer line
Loop resistance:	100 $\Omega.$ Higher resistance will reduce signal accuracy (max. 400 Ω at 12 V, 800 Ω at 24 V)
Power supply:	12 to 24V DC (±10%, tested according to EN 50082-2)
Supply current:	max. 0.1 A
Cable inlet:	IP65 at ø 5.5 to 10 mm
Input connectors:	silver plated brass, 10 to 15 μ
Housing:	polycarbonate, IP65
Vibration exposure:	max 5 mm/s RMS
Temperature range:	0° to 55° C
Dimensions:	110 x 149 x 56 mm
Mounting screws:	4 screws, ø 4 mm,
	spacing 109 x 94 mm
Weight:	300 g

CE

CMM System - Bearing Display Module BDM

Bearing Display Modules BDM have two functions:

- they measure bearing condition (unnormalized maximum value) on two channels and convert the result into an analog 4-20 mA signal which can be sent to a PLC.
- they display analog 4-20 mA signals as a 3 digit measured value. All units have two inputs for analog 4-20 mA, connected to the value display, the condition display and the alarm relays. The analog signal normally comes from the module's measuring channels, but can even come from external sources.

There are two versions:

BDM-40A for shock pulse transducer type 40000. The coaxial cable between transducer and module is max. 4 m.

BDM-42A for shock pulse transducer type 42000. The coaxial cable between transducer and module is max. 100 m.

The measuring range for both channels can be jumper set to either 0 to 80 or 20 to 100 dBsv. The modules are wall mounted and supplied with 12 to 24VDC. A transducer line fault is indicated by an output of \leq 1 mA. This output can be disconnected by a jumper setting.

The display circuit acts as a programmable ampere meter with two channels. Using two push-buttons, one can select preprogrammed measuring units and ranges from a list and set two alarm levels (with alarm delay) for each channel. These are connected to the condition display (green-yellow -red) and to two relay outputs.

The relays can be controlled by either display channel. In one channel mode, both relays are slaved to a single display channel and provide relay switching at two levels (ALERT and ALARM). In two channel mode, each display channel uses one relay which switches at the ALARM level.

Technical data

lecinical data	
Measuring method:	SPM dBm, unnormalized maximum value
Measuring channels:	2, multiplexing
Measuring range 1:	0 to 80 dBsv (5 dB /mA, 0.2mA/dB)
Measuring range 2:	20 to 100 dBsv (6.25 dB /mA, 0.16 mA/dB)
Measuring time:	approx. 1 second per channel
Transducer type:	SPM 40000 (BDM-40A), SPM 42000 (BDM-42A)
Transducer cable:	coaxial cable, SPM 90005-L, or 90267-L (L = length in m)
Analog output:	4 to 20 mA, no galvanic separation
Fault indication:	≤1 mA out = interrupted or faulty transducer line
Loop resistance:	100 Ω . Higher resistance will reduce signal accuracy (max. 400 Ω at 12 V, 800 Ω at 24 V)
Power supply:	12 to 24V DC (± 10%, tested accord- ing to EN 50082-2)
Supply current:	max 0.15 A
Cable inlet:	IP 65 at ø 5.5 to 10 mm
Input connectors:	silver plated brass, 10 to 15µ
Housing:	polycarbonate, IP65
Temperature range:	0° to 55° C
Vibration exposure:	max 5 mm/s RMS
Dimensions:	110 x 149 x 56 mm
Mounting screws: Weight:	4 screws, ø4 mm, spacing 109 x 94 mm 400 g
Signal to display:	4 to 20 mA, 2 channels
Relays:	2, max. 24 V/100 mA
Value display:	3 digits LED
Condition display:	green, yellow, and red LED
Alarm limits:	2 per input channel, set with push- buttons
Push-buttons:	2, for display control, alarm limit and alarm delay setting

Technical data are subject to change without notice. ISO 9001 certified. ©Copyright SPM 2009-03. TD-146.B

CE

CMM System - Vibration Monitoring Module VMM

Vibration Monitoring Modules VMM are programmable converters which supply a 4-20 mA signal proportional to the RMS-value of vibration velocity. There are four versions:

VMM-14: 1 channel, frequency range 10 - 1000 Hz VMM-15: 1 channel, frequency range 3 - 1000 Hz VMM-20: 2 channels, frequency range 10 - 1000 Hz VMM-21: 2 channels, frequency range 3 - 1000 Hz.

The frequency range of 3 to 1000 Hz is suitable for machines with rotational speed down to 180 r.p.m.

The measuring range can be DIP switch set to either 0 to 5, 0 to 10, 0 to 20 or 0 to 40 mm/s.

The 4-20 mA output can be supplied to a display module type DMM, to a PLC or to a computer controlled monitoring system (e.g. SPM's CMS System).

A transducer line fault causes an output of <1 mA. If this should interfere with PLC operations, the min. output can be jumper set to 4 mA, individually for each channel.

The vibration transducer is connected via coaxial cable with TNC connectors. The module is wall mounted with 4 screws \emptyset 4 mm and supplied with 12 to 24 V DC. The cable inlet is tight for cable diameters 5.5 to 10 mm.

Technical data

lecifical data	
Measuring method:	vibration severity similar to ISO 10816 (modified frequency range, VMM-15/21)
Channels:	1 (VMM-14/15), 2 (VMM-20/21)
Measuring range 1:	0 - 5 mm/s (0 -0.19 inch/s)
Resolution:	3.2 mA = 1 mm/s; 1 mA = 0.313 mm/s
Measuring range 2:	0 - 10mm/s (0 - 0.39 inch/s)
Resolution:	1.6 mA = 1 mm/s; 1 mA = 0.625 mm/s
Measuring range 3:	0 - 20mm/s (0 - 0.78 inch/s)
Resolution:	0.8 mA = 1 mm/s; 1 mA = 1.25 mm/s
Measuring range 4:	0 - 40mm/s (0 - 1,57 inch/s)
Resolution:	0.4 mA = 1 mm/s; 1 mA = 2.5 mm/s
Frequency range:	10 to 1000 Hz (VMM-14/20) 3 to 1000 Hz (VMM-15/21)
Transducer type:	TRV-18/19, SLD121
Transducer cable:	coaxial cable, SPM 90005-L , or 90267-L, (L = max. 50 m)
Analog output:	4 to 20 mA, no galvanic separation
Fault indication:	\leq 1 mA out for open or short circuit
Loop resistance:	100 $\Omega.$ Higher resistance will reduce signal accuracy (max. 400 Ω at 12 V, 800 Ω at 24 V)
Power supply:	12 to 24V DC (± 10%, according to EN 50082-2)
Supply current:	max 0.1 A
Cable inlet:	IP 65 at ø 5.5 to 10 mm
Input connectors:	silver plated brass, 10 to 15 μ
Housing:	polycarbonate, IP65
Temperature range:	0° to 55° C
Dimensions:	110 x 149 x 56 mm
Mounting screws:	4 screws, ø 4mm, spacing 109x94 mm
Weight:	300 g

CMM System - Vibration Display Module VDM

Vibration Display Modules VDM have two functions:

- they measure the RMS-value of vibration velocity on one or two channels and convert it to an analog 4-20 mA signal which can be sent to a PLC.
- they display analog 4-20 mA signals as a 3 digit measured value. All units have two inputs for analog 4-20 mA, connected to the value display, the condition display and the alarm relays. The analog signal normally comes from the unit's measuring channel(s), but can even come from external sources.

There are four versions:

VDM-14A: 1 vibration channel, frequency range 10 - 1000 Hz VDM-15A: 1 vibration channel, frequency range 3 - 1000 Hz VDM-20A: 2 vibration channels, frequency range 10-1000 Hz VDM-21A: 2 vibration channels, frequency range 3 - 1000 Hz.

The vibration transducer is connected via coaxial cable. The module is wall mounted and supplied with 12 to 24 V DC. The cable inlet is tight for cable diameters 5.5 to 10 mm. A transducer line fault causes an output of <1 mA. If this should interfere with PLC operations, the min. output can be jumper set to 4 mA, individually for each measuring channel.

The display circuit acts as a programmable ampere meter with two channels. Using two push-buttons, one can select preprogrammed measuring units and ranges from a list and set two alarm levels (with alarm delay) for each channel. These are connected to the condition display (green - yellow - red) and to two relay outputs. The relays can be controlled by either display channel. In one channel mode, both relays are slaved to a single display channel and provide relay switching at two levels (ALERT and ALARM). In two channel mode, each display channel uses one relay which switches at the ALARM level.

Technical data

Measuring method:	vibration severity similar to ISO 10816 (modified lower freq., VDM-15A/21A)
Vibration channels:	1 (VDM-14A/15A), 2 (VDM-20A/21A)
Measuring range 1:	0-5 mm/s (0-0,19 inch/s)
Resolution:	3,2 mA = 1 mm/s; 1 mA = 0,313 mm/s
Measuring range 2:	0-10mm/s (0-0,39 inch/s)
Resolution:	1,6mA = 1mm/s; 1mA = 0,625 mm/s
Measuring range 3:	0-20mm/s (0-0,78 inch/s)
Resolution:	0,8 mA = 1 mm/s; 1 mA = 1,25 mm/s
Measuring range 4:	0-40mm/s (0-1,57 inch/s)
Resolution:	0,4 mA = 1 mm/s; 1 mA = 2,5 mm/s
Frequency range:	10 to 1000Hz (VDM-14A/20A)
	3 to 1000 Hz (VDM-15A/21A)
Transducer type:	TRV-18/19, SLD121
Transducer cable:	coaxial cable, SPM 90005-L , or 90267-L (L= max. 50 m)
Analog output:	4 to 20 mA, no galvanic separation
Fault indication:	\leq 1 mA out for open or short circuit
Loop resistance:	100 Ω . Higher resistance will reduce signal accuracy (max. 400 Ω at 12 V, 800 Ω at 24 V)
Power supply:	12 to 24V DC (± 10%, tested according to EN 50082-2), max 0.15 A
Housing:	polycarbonate, IP65
Temperature range:	0 to 55 °C
Vibration exposure:	max. 5 mm/s RMS
Cable inlet:	IP 65 at ø 5.5 to 10 mm
Input connectors:	silver plated brass, 10 to 15 μ
Dimensions:	110 x 149 x 56 mm
Mounting screws:	4 screws, ø 4 mm, spacing 109 x 94 mm
Weight:	400 g
Signal to display:	4 to 20 mA, 2 channels
Relays:	2, max. 24 V/100 mA
Value display:	3 digits, LED
Condition display:	green, yellow, and red LED
Alarm limits:	2 per display channel
Push-buttons:	2, for display control and programming

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden

Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

Technical data are subject to change without notice. ISO 9001 certified. © Copyright SPM 2009-03. TD-148.B

CE

CMM System - Display Module DMM-12

DMM-12 is a condition display module for 4-20 mA analog signals. Measured quantities and ranges are selected from a preprogrammed list (13 programs) or from user defined programs (7 programs).

The display module is clipped onto a standard mounting rail in a control cabinet or similar, and supplied with 12 to 24 V DC, source referred to earth.

The display module has two input channels and two relay outputs. The relays can be controlled by either input channel. In one channel mode, both relays are slaved to a single input channel and provide relay switching at two levels (ALERT and ALARM). In two channel mode, each input channel uses one relay which switches at a preset ALARM level.

Programmable parameters for each input channel are the measuring range, the two alarm levels ALERT and ALARM, and the alarm delay. These are input using two push buttons. Power failure will not erase the program.

Condition display is provided by three coloured LEDs. The green LED is on while measured values are below the ALERT level. Measured values between ALERT and ALARM on either channel trigger a yellow LED, and a red LED lights up when a measured value exceeds an ALARM level. A blinking yellow LED indicates a system fault (incoming signal below 4 mA).

The measured value is displayed with three digits. In two channel mode the status LED's and the display alternates between the two channels and shows the channel number followed by the measured value on this channel.

Technical data

Input channels:	2
Input signals:	4 to 20 mA
Relays (2):	24V / 100 mA
Measuring range:	selected to match the signal input
Value display:	3 digits, LED
Status display:	green, yellow, and red LED
Alarm limits:	2 per input channel, set with push- buttons
Alarm delay:	0 - 600 seconds for each alarm level
Push-buttons:	2, for display control and programming
Fault indication:	blinking yellow LED = signal below 4 mA
Power supply:	12 to 24V DC (±10%, tested according to EN50082-2)
Supply current:	max 0.1 A
Vibration exposure:	max. 5 mm/s RMS
Housing:	polyamide, not protected
Temperature range:	0㎡to 55㎡C
Dimensions:	80 x 71 x 43 mm
Mounting:	clip on to 35 mm DIN rail
Weight:	100 g

CE

CMM System - Display Module DMM-13/14

DMM-13 and DMM-14 are condition display modules for 4-20 mA analog signals. Measured quantities and ranges are selected from a preprogrammed list (13 programs) or from user defined programs (7 programs). DMM-14 has two extra cable inlets of type Pg7.

The display module can be wall mounted separately or in a control cabinet or similar. It is supplied with 12 to 24 V DC.

The display module has two input channels and two relay outputs. The relays can be controlled by either input channel. In one channel mode, both relays are slaved to a single input channel and provide relay switching at two levels (ALERT and ALARM). In two channel mode, each input channel uses one relay which switches at a preset ALARM level.

Programmable parameters for each input channel are the measuring range, the two alarm levels ALERT and ALARM, and the alarm delay. These are input using two push buttons. Power failure will not erase the program.

Condition display is provided by three coloured LEDs. The green LED is on while measured values are below the ALERT level. Measured values between ALERT and ALARM on either channel trigger a yellow LED, and a red LED lights up when a measured value exceeds the ALARM level. A blinking yellow LED indicates a system fault (incoming signal below 4 mA).

The measured value is displayed with three digits. In two channel mode the status LED's and the display alternates between the two channels and shows the channel number followed by the measured value on this channel.

Technical data

Input channels:	2
Input signals:	4 to 20 mA
Relays (2):	24V/100 mA
Measuring range:	selected to match the signal input
Value display:	3 digits, LED
Status display:	green, yellow, and red LED
Alarm limits:	2 per input channel, set with push- buttons
Alarm delay:	0 - 600 seconds for each alarm level
Push-buttons:	2, for display control and programming
Fault indication:	blinking yellow LED = signal below 4 mA
Power supply:	12 to 24V DC (±10%, tested according to EN50082-2)
Supply current:	max. 0.1 A
Vibration exposure:	max. 5 mm/s RMS
Cable inlets:	Pg11, IP65 at ø5.5 to 10 mm Pg7, IP65 at ø3 to 6.5 mm (DMM-14)
Housing:	polycarbonate, IP 65
Temperature range:	0° to 55° C
Dimensions:	110 x 143 x 56 mm
Mounting:	4 screws, ø4 mm, spacing 109x94 mm
Weight:	320 g

The CMM System

The CMM system is a permanently installed, continuous condition monitoring system, consisting of transducers, converters, power supply modules, and combined display and control modules.

The transducers measure bearing condition (shock pulse method), vibration severity (ISO 10816), and temperature. The converters, with or without display of measured value, transform the shock pulse and vibration transducer signals into 4 to 20 mA analog signals. The temperature transducer has an output of 4 to 20 mA. The display modules (DMR) have two input channels for 4 to 20 mA, and two relay outputs (24 V / 100 mA).

This line of modules is intended for rack mounting. The 19" subrack holds up to 12 modules (7HP).

Vibration Monitoring Rack Modules

VMR-14	1 channel, 10-1000 Hz
VMR-15	1 channel, 3 -1000 Hz
VMR-20	2 channels,10-1000 Hz
VMR-21	2 channels, 3 -1000 Hz
VMR-14 BO	1 channel, 10-1000 Hz, with bypass output
VMR-15 BO	1 channel, 3 -1000 Hz, with bypass output
VMR-20 BO	2 channels,10-1000 Hz, with bypass output
VMR-21 BO	2 channels, 3 -1000 Hz, with bypass output
VDR-14	1 channel with display, 10-1000 Hz
VDR-15	1 channel with display, 3 -1000 Hz
VDR-20	2 channels with display, 10-1000 Hz
VDR-21	2 channels with display, 3 -1000 Hz

Bearing Monitoring Rack Modules

Dearing	Monitoring Rack Modules
BMR-40	2 channels, for transducer 40000
	(max. cable length L = 4 m)
BMR-42	2 channels, for transducer 42000
	(max. cable length L = 100 m)
	2 channels with display for transducer

- BDR-40 2 channels with display, for transducer 40000 (max. cable length L = 4 m)
- BDR-42 2 channels with display, for transducer 42000 (max. cable length L = 100 m)

Display Module for Rack

DMR-14 2 channels, 4-20 mA in, 2 relays (24 V/100 mA)

Accessories

14880 19" subrack, 3U high, compl. with cover plates
SMR-50 Power supply module, 115/230 V AC / 24 V DC
81335 Blank panel, 3U x 7HP

Transducers and cables

TRV-18	Vibration transducer, M8
TRV-19	Vibration transducer, UNF 1/4"
TRX-18	Insulation foot for vibration transducer TRV-18
TRX-19	Insulation foot for vibration transducer TRV-19
40000	Shock pulse transducer
42000	Shock pulse transducer with matching unit
45011-L 45300-L	Coaxial cable with connectors, temp. range -10° to +70°C (L = length in meters) Coaxial cable with connectors, temp. range -40° to +125° C (L = length in meters)
TMM-10	Temperature transducer, -16° to +120° C
90296-L	Twinned cable for TMM-10, max. 125° C

CMM System - Bearing Monitoring Rack Module BMR

Bearing Monitoring Rack Modules BMR are converters with two channels which output 4-20 mA proportional to the unnormalized maximum value of the shock pulses measured on a bearing. The measuring time is approximately 1 second per channel. The measuring range for both channels together can be jumper set to either 0 to 80 or 20 to 100 dBsv.

The 4-20 mA current can be supplied to an display module of type DMM/DMR, to a PLC or to a computer controlled monitoring system (e.g. SPM's CMS System).

There are two versions:

BMR-40 for shock pulse transducer type 40000. The coaxial cable used between transducer and module is max. 4 m.

BMR-42 for shock pulse transducer type 42000. The coaxial cable used between transducer and module is max. 100 m.

The modules are mounted in standard 19" racks and supplied with 12 to 24VDC. A transducer line fault is indicated by an output of \leq 1 mA. This output can be changed to 4 mA by a jumper setting common for both channels.

Signal conversion

Technical data

Measuring method:	SPM dBm, unnormalized maximum value
Measuring channels:	2, multiplexing
Measuring range 1:	0 to 80 dBsv
	(5 dB /mA, 0.2 mA/dB)
Measuring range 2:	20 to 100 dBsv
	(4 mA ≤ 20 dBsv)
Measuring time:	approx. 1 second per channel
Transducer type:	SPM 40000 (BMR-40),
	SPM 42000 (BMR-42)
Transducer cable:	coaxial cable, SPM 90005-L, or SPM 90267-L (L = length in m)
Analog output:	4 to 20 mA, no galvanic separation
Fault indication:	<pre>≤ 1 mA out = interrupted or faulty transducer line</pre>
Loop resistance:	100 $\Omega.$ Higher resistance will reduce signal accuracy (max. 400 Ω at 12 V, 800 Ω at 24 V)
Power supply:	12 to 24V DC (±10%, tested according to EN 50082-2)
Supply current:	max. 0.1 A
Temperature range:	0° to 55° C
Vibration exposure:	max 5 mm/s RMS
Design:	anodised aluminium, not protected
Input connectors:	TNC, silver plated brass, 10-15 μ
Output connectors:	screw terminals for cable max. 1.5 mm², connector plug included
Mounting:	19" rack
Dimensions:	3 U x 7 HP x 214 mm, DIN 41494
Weight:	250 g

CMM System - Bearing Display Rack Module BDR

Bearing Display Rack Modules BDR have two functions:

- they measure bearing condition (unnormalized maxi-• mum value) on two channels and convert the result into an analog 4-20 mA signal which can be sent to a PLC.
- they display the analog 4-20 mA signal as a 3 digit measured value. All units have two inputs for analog 4-20 mA, connected to the value display, the condition display and the alarm relays. The analog signal normally comes from the module's measuring channels, but can even come from external sources.

There are two versions:

BDR-40 for shock pulse transducer type 40000. The coaxial cable between transducer and module is max. 4 m.

BDR-42 for shock pulse transducer type 42000. The coaxial cable between transducer and module is max. 100 m.

The measuring range for both channels can be jumper set to either 0 to 80 or 20 to 100 dBsv. The modules are mounted in standard 19" racks and supplied with 12 to 24VDC. A transducer line fault is indicated by an output of ≤ 1 mA. This output can be disconnected by a jumper setting.

The display circuit acts as a programmable ampere meter with two channels. Using two push-buttons, one can select preprogrammed measuring units and ranges from a list and set two alarm levels (with alarm delay) for each channel. These are connected to the condition display (green-yellow -red) and to two relay outputs.

The relays can be controlled by either display channel. In one channel mode, both relays are slaved to a single display channel and provide relay switching at two levels (ALERT and ALARM). In two channel mode, each display channel uses one relay which switches at the ALARM level.

Technical data

Measuring method:	SPM dBm, unnormalized maximum value
Measuring channels:	2, multiplexing
Measuring range 1:	0 to 80 dBsv (5 dB /mA, 0.2mA/dB)
Measuring range 2:	20 to 100 dBsv (4 mA ≤ 20 dBsv)
Measuring time:	approx. 1 second per channel
Transducer type:	SPM 40000 (BDR-40),
	SPM 42000 (BDR-42)
Transducer cable:	coaxial cable, SPM 90005-L, or
	90267-L (L = length in m)
Analog output:	4 to 20 mA, no galvanic separation
Fault indication:	≤1 mA out = interrupted or faulty trans- ducer line
Loop resistance:	100 $\Omega.$ Higher resistance will reduce signal accuracy (max. 400 Ω at 12 V, 800 Ω at 24 V)
Power supply:	12 to 24V DC (\pm 10%, tested according to EN 50082-2)
Supply current:	max 0.15 A
Temperature range:	0° to 55° C
Vibration exposure:	max 5 mm/s RMS
Design:	anodised aluminium, not protected
Input connectors:	TNC, silver plated brass, 10-15 μ
Output connectors:	screw terminals for cable max. 1.5 mm², connector plug included
Mounting:	19" rack
Dimensions:	3 U x 7 HP x 214 mm, DIN 41494
Weight:	300 g
Signal to display:	4 to 20 mA, 2 channels
Relays:	2, max. 24 V/100 mA
Value display:	3 digits LED
Condition display:	green, yellow, and red LED
Alarm limits:	2 per input channel, set with push- buttons
Push-buttons:	2, for display control, alarm limit and alarm delay setting
	(6

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden

Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

Technical data are subject to change without notice. ISO 9001 certified. © Copyright SPM 2006-07. TD-182 B

CMM System - Vibration Monitoring Rack Module VMR

Vibration Monitoring Rack Modules VMR are programmable converters which supply a 4-20 mA signal proportional to the RMS-value of vibration velocity.

There are four versions:

VMR-14: 1 channel, frequency range 10-1000 Hz

VMR-15: 1 channel, frequency range 3–1000 Hz

VMR-20: 2 channels, frequency range 10–1000 Hz

VMR-21: 2 channels, frequency range 3–1000 Hz.

The frequency range of 3 to 1000 Hz is suitable for machines with rotational speed down to 180 r.p.m.

The measuring range can be DIP switch set to either 0 to 5, 0 to 10, 0 to 20 or 0 to 40 mm/s.

The 4-20 mA output can be supplied to a display module type DMM/DMR, to a PLC or to a computer controlled monitoring system (e.g. SPM's CMS System).

A transducer line fault causes an output of <1 mA. If this should interfere with PLC operations, the min. output can be jumper set to 4 mA, individually for each channel.

The vibration transducer is connected via coaxial cable with TNC connector. The modules are mounted in standard 19" rack and supplied with 12 to 24 V DC.

Technical data

Measuring method:

•	(modified frequency range, VMR-15/21)
Channels:	1 (VMR-14/15), 2 (VMR-20/21)
Measuring range 1:	0 - 5 mm/s (0 -0.19 inch/s)
Resolution:	3.2 mA = 1 mm/s; 1 mA = 0.313 mm/s
Measuring range 2:	0 - 10mm/s (0 - 0.39 inch/s)
Resolution:	1.6 mA = 1 mm/s; 1 mA = 0.625 mm/s
Measuring range 3:	0 - 20mm/s (0 - 0.78 inch/s)
Resolution:	0.8 mA = 1 mm/s; 1 mA = 1.25 mm/s
Measuring range 4:	0 - 40mm/s (0 - 1,57 inch/s)
Resolution:	0.4 mA = 1 mm/s; 1 mA = 2.5 mm/s
Frequency range:	10 to 1000 Hz(VMR-14/20) 3 to 1000 Hz(VMR-15/21)
Transducer type:	SLD121, TRV18, TRV19
Transducer cable:	coaxial cable, SPM 90005-L , or 90267-L, (L = max. 50 m)
Analog output:	4 to 20 mA, no galvanic separation
Fault indication:	\leq 1 mA out for open or short circuit
Loop resistance:	100 $\Omega.$ Higher resistance will reduce signal accuracy (max. 400 Ω at 12 V, 800 Ω at 24 V)
Power supply:	12 to 24V DC (±10%, according to
	EN 50082-2)
Supply current:	max 0.1 A
Temperature range:	0° to 55° C
Vibration exposure:	max. 5 mm/s RMS
Design:	anodised aluminium, not protected
Input connectors:	TNC, silver plated brass, 10–15 μ
Output connectors:	screw terminals for cable max. 1.5 mm², connector plug included
Mounting:	19" rack
Dimensions:	3 U x 7 HP x 214 mm, DIN 41494
Weight:	200 g (VMR-14/15) 250 g (VMR-20/21)

vibration severity similar to ISO 10816

CMM System - Vibration Monitoring Rack Module VMR-BO

Vibration Monitoring Rack Modules VMR-BO are programmable converters which supply a 4-20 mA signal proportional to the RMS-value of vibration velocity. They have bypass outputs for connection of portable instruments.

There are four versions:

VMR-14 BO: 1 channel, frequency range 10–1000 Hz VMR-15 BO: 1 channel, frequency range 3–1000 Hz VMR-20 BO: 2 channels, frequency range 10–1000 Hz VMR-21 BO: 2 channels, frequency range 3–1000 Hz.

The frequency range of 3 to 1000 Hz is suitable for machines with rotational speed down to 180 r.p.m.

The measuring range can be DIP switch set to either 0 to 5, 0 to 10, 0 to 20 or 0 to 40 mm/s.

The 4-20 mA output can be supplied to a display module type DMM/DMR, to a PLC or to a computer controlled monitoring system (e.g. SPM's CMS System).

A transducer line fault causes an output of <1 mA. If this should interfere with PLC operations, the min. output can be jumper set to 4 mA, individually for each channel.

The vibration transducer is connected via coaxial cable with TNC connector. The modules are mounted in standard 19" rack and supplied with 12 to 24 V DC.

The portable instrument SPM Leonova (or similar) can be connected to the pypass outputs on the front panel via a coaxial cable with BNC connectors.

Technical data

Measuring method:	vibration severity similar to ISO 10816 (modified frequency range, VMR-15/21 BO)
Channels:	1 (VMR-14/15 BO), 2 (VMR-20/21 BO)
Measuring range 1:	0 - 5 mm/s (0 -0.19 inch/s)
Resolution:	3.2 mA = 1 mm/s; 1 mA = 0.313 mm/s
Measuring range 2:	0 - 10mm/s (0 - 0.39 inch/s)
Resolution:	1.6 mA = 1 mm/s; 1 mA = 0.625 mm/s
Measuring range 3:	0 - 20mm/s (0 - 0.78 inch/s)
Resolution:	0.8 mA = 1 mm/s; 1 mA = 1.25 mm/s
Measuring range 4:	0 - 40mm/s (0 - 1,57 inch/s)
Resolution:	0.4 mA = 1 mm/s; 1 mA = 2.5 mm/s
Frequency range:	10 to 1000 Hz (VMR-14/20) 3 to 1000 Hz (VMR-15/21)
Transducer type:	SLD121, TRV18, TRV19
Transducer cable:	coaxial cable, SPM 90005-L , or 90267-L, (L = max. 50 m)
Analog output:	4 to 20 mA, no galvanic separation
Fault indication:	\leq 1 mA out for open or short circuit
Loop resistance:	100 $\Omega.$ Higher resistance will reduce signal accuracy (max. 400 Ω at 12 V, 800 Ω at 24 V)
Power supply:	12 to 24V DC (± 10%, according to EN 50082-2)
Supply current:	max 0.1 A
Temperature range:	0° to 55° C
Vibration exposure:	max. 5 mm/s RMS
Design:	anodised aluminium, not protected
Input connectors:	TNC, silver plated brass, 10–15 μ
Output connectors:	screw terminals for cable max. 1.5 mm ² , connector plug included
Bypass outputs:	BNC connectors for connection of SPM Leonova or similar instrument
Mounting:	19" rack
Dimensions:	3 U x 7 HP x 222 mm, DIN 41494
Weight:	210 g (VMR-14BO/15BO) 350 g (VMR-20BO/21BO)

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com Technical data are subject to change without notice. ISO 9001 certified. ©Copyright SPM 2007-04. TD-194 B

CMM System - Vibration Display Rack Module VDR

Vibration Display Rack Modules VDR have two functions:

- they measure the RMS-value of vibration velocity on one or two channels and convert it to an analog 4-20 mA signal which can be sent to a PLC.
- they display the analog 4-20 mA signal as a 3 digit measured value. All units have two inputs for analog 4-20 mA, connected to the value display, the condition display and the alarm relays. The analog signal normally comes from the unit's measuring channel(s), but can even come from external sources.

There are four versions:

VDR-14: 1 vibration channel, frequency range 10-1000 Hz VDR-15: 1 vibration channel, frequency range 3-1000 Hz VDR-20: 2 vibration channels, frequency range 10-1000 Hz VDR-21: 2 vibration channels, frequency range 3-1000 Hz.

The vibration transducer is connected via coaxial cable. The modules are mounted in standard 19" racks and supplied with 12 to 24 V DC. The cable inlet is tight for cable diameters 5.5 to 10 mm. A transducer line fault causes an output of <1 mA. If this should interfere with PLC operations, the min. output can be jumper set to 4 mA, individually for each measuring channel.

The display circuit acts as a programmable ampere meter with two channels. Using two push-buttons, one can select preprogrammed measuring units and ranges from a list and set two alarm levels (with alarm delay) for each channel. These are connected to the condition display (green - yellow - red) and to two relay outputs. The relays can be controlled by either display channel. In one channel mode, both relays are slaved to a single display channel and provide relay switching at two levels (ALERT and ALARM). In two channel mode, each display channel uses one relay which switches at the ALARM level.

Technical data

Measuring method: vibration severity similar to ISO 10816 (modified lower freq., VDR-15/21) 1 (VDR-14/15), 2 (VDR-20/21) Vibration channels: Measuring range 1: 0-5 mm/s (0-0,19 inch/s) **Resolution:** 3,2 mA = 1 mm/s; 1 mA = 0,313 mm/s Measuring range 2: 0-10mm/s (0-0,39 inch/s) **Resolution:** 1,6mA = 1mm/s; 1mA = 0,625 mm/s 0-20mm/s (0-0,78 inch/s) Measuring range 3: Resolution: 0,8 mA = 1 mm/s; 1 mA = 1,25 mm/s Measuring range 4: 0-40mm/s (0-1,57 inch/s) **Resolution:** 0,4 mA = 1 mm/s; 1 mA = 2,5 mm/s 10 to 1000 Hz (VDR-14/20) Frequency range: 3 to 1000 Hz (VDR-15/21) Transducer type: SLD121, TRV18, TRV19 coaxial cable, SPM 90005-L , or 90267-L Transducer cable: (L= max. 50 m) Analog output: 4 to 20 mA, no galvanic separation Fault indication: \leq 1 mA out for open or short circuit Loop resistance: 100 Ω . Higher resistance will reduce signal accuracy (max. 400 Ω at 12 V, 800 Ω at 24 V) Power supply: 12 to 24V DC (± 10%, tested according to EN 50082-2), max 0.15 A Design: anodised aluminium, not protected Input connectors: TNC, silver plated brass, 10-15 µ Output connectors: screw terminals for cable max. 1.5 mm², connector plug included Temperature range: 0 to 55 °C max. 5 mm/s RMS Vibration exposure: Mounting: 19" rack Dimensions: 3 U x 7 HP x 214 mm, DIN 41494 200 g (VDR-14/15), 300 g (VDR-20/21) Weight: 4 to 20 mA, 2 channels Signal to display: 2, max. 24 V/100 mA **Relays:** 3 digits, LED Value display: Condition display: green, yellow, and red LED Alarm limits: 2 per display channel Push-buttons: 2, for display control and programming

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden

Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

Technical data are subject to change without notice. ISO 9001 certified. ©Copyright SPM 2007-04. TD-184 B

CE

CMM System - Display Module for Rack DMR-14

DMR-14 is a condition display module for 4-20 mA analog signals. Measured quantities and ranges are selected from a preprogrammed list (13 programs) or from user defined programs (7 programs).

The display module is intended for mounting in standard 19" racks. It is supplied with 12 to 24 V DC, source referred to earth.

The display module has two input channels and two relay outputs. The relays can be controlled by either input channel. In one channel mode, both relays are slaved to a single input channel and provide relay switching at two levels (ALERT and ALARM). In two channel mode, each input channel uses one relay which switches at a preset ALARM level.

Programmable parameters for each input channel are the measuring range, the two alarm levels ALERT and ALARM, and the alarm delay. These are input using two push buttons. Power failure will not erase the program.

Condition display is provided by three coloured LEDs. The green LED is on while measured values are below the ALERT level. Measured values between ALERT and ALARM on either channel trigger a yellow LED, and a red LED lights up when a measured value exceeds an ALARM level. A blinking yellow LED indicates a system fault (incoming signal below 4 mA).

The measured value is displayed with three digits. In two channel mode the status LED's and the display alternate between the two channels and show the channel number followed by the measured value on this channel.

Technical data

Input channels:	2
Input signals:	4 to 20 mA
Output channels:	2 relays, 24V / 100 mA
Measuring range:	selected to match the signal input
Value display:	3 digits, LED
Condition display:	green, yellow, and red LED
Alarm limits:	2 per input channel, set with push- buttons
Alarm delay:	0 - 600 seconds for each alarm level
Push-buttons:	2, for display control and programming
Line continuity:	blinking yellow LED = signal below 4 mA (faulty or interrupted input circuit)
Masuring resistance:	47 Ω
Power supply:	12 to 24 V DC (±10%, tested according to EN 50082-2)
Supply current:	max. 0.1 A
Temperature range:	0° to 55° C
Vibration exposure:	max. 5 mm/s RMS
Design:	anodised aluminium, not protected
Input/output connectors:	screw terminals for cable max. 1.5 mm², connector plug included
Mounting:	19" rack
Dimensions:	3 U x 7 HP x 204 mm, DIN 41494
Weight:	200 g

CMM System - Power Supply Module SMR-50

SMR-50 is a 35W switching power supply module with output for up to ten CMM modules. It has built in EMI filter and short circuit/overload protection with foldback limiting.

The power supply module is mounted in a standard 19 inch rack (SPM 14880). It is supplied with 115 V AC or 230 V AC selected by a switch on the circuit board.

Technical data

Input voltage:	85 to 132 VAC, 0.8 A or 170 to 264 VAC, 0.45 A selected by switch
Input frequency:	47 to 63 Hz
Output:	24 V (±10% ADJ), 1.5 A
Ripple:	< 2% (p-p)
Working temperature:	0 to 50YC at 100%, -10YC at 80%, 60YC at 60%
Storage temperature:	-25 to 651C
Operation humidity:	25 to 85% RH
EMI Standards:	IEC-100-3-2, 3, FCC class B
EMC Standards:	EN61000-4-2, 3, 4, 5
Approvals:	CE/CSA:219967-1426940
Vibration exposure:	max. 5 mm/s RMS
Design:	anodised aluminium, shielded
Mounting:	19" rack, screw terminals
Dimensions:	3 U x 14 HP x 204 mm, DIN 41494
Weight:	approx. 600 g

SPM 14880 is a standard 19 inch subrack for up to twelve CMM monitoring modules (7HP) or ten monitoring modules plus the power supply unit SMR-50 (14HP). The subrack has an open back plane for cable connections.

Empty spaces can be filled up with blank front panels, SPM 81335 ($3U \times 7HP$). The subrack is delivered complete with bottom plate, vented top plate and twelve module slots for mounting of CMM rack modules.

Technical data

Material:	
Dimensions:	
Weight:	

anodised aluminium 482 x 132 x 238 mm 1600 g

CMS: System Components

TD-063 TD-124 TD-203 TD-215 TD-018 TD-259 TD-217

TD-107

The CMS System

The CMS System is a permanently installed, continuous machine condition monitoring system. It can be handled by the SPM software Condmaster[®], a PC program which controls the system and collects, stores, and evaluates the measuring results.

A CMS system comprises: 1) Transducer line, 2) Measuring units, 3) System unit, and 4) Computer with Condmaster[®]. The parts are specified on a number of data sheets (TD) referred to below.

1. Transducer line

A. Bearing monitoring line:

A shock pulse transducer (several alternatives) and a transducer matching unit (TMU) are connected by coaxial cable to the measuring unit:

Standard transducer 40000 (40100) + TMU-12	TD-004
Transducer 42000 (42100) with built-in TMU	TD-005
Isolated transducer 11223-L + TMU 12	TD-006
Ex-proof transducer 42011 (42111), transformer	TD-116
Coaxial cables and connectors	TD-018
Transducer matching unit TMU-12	TD-055

B. Vibration monitoring and analysis:

Vibration transducer TRV-10/11 (VMS)
Vibration transducer TRV-20/21 (VCM)
Vibration transducer SLD144 B/F (VCM)
Vibration transducer SLD244 B/F, Ex (VCM)
Coaxial cables and connectors
Twisted pair cables for SLD transducers
Connector 15168 for SLD transducers

C. Temperature monitoring:

Temperature transduce	r TMM-10
-----------------------	----------

2. Measuring units

There are 4 types of measuring units, BMS (bearing monitoring), VMS (vibration severity monitoring), VCM (vibration analysis with the EVAM[®] method) and BMC (bearing monitoring with SPM Spectrum[™]. The BMS and VMS units can be equipped with additional boards for monitoring of speed (RPM board) or analogue signals (AMS board).

A. Bearing monitoring:

Measuring unit BMS with 16 bearing channel	els TD-40
B. Vibration monitoring: Measuring unit VMS for 8 vib. channels	TD-42
C. RPM monitoring: RPM board 13490 with 4 channels Analogue RPM board 13854 for VMS/BMS	TD-41 TD-87
D. Monitoring of analogue signals: Analogue board 13863 (AMS measuring un with 16 analogue channels	it) TD-84
E. Evaluated vibration analysis: Measuring unit VCM for 8 alt. 24 vib. chann	els TD-123
F. Bearing monitoring with SPM Spectr Cabinet BMC (connected to the host unit V with 7 to 56 bearing channels	r um ™ ′CM) TD-174
3. System unit The system unit SYS-10 is the interface between the measuring units and the PC.	
System unit SYS-10 Computer cables and connectors	TD-45 TD-44
4. Computer with Condmaster® The system software Condmaster®Nova requires a PC for Windows environment.	Nova
SPM Condmaster®Nova	D-230 – TD245

CMS System: Measuring Unit BMS

Bearing monitoring

Measuring unit BMS is a part of the CMS System for continuous bearing monitoring. A CMS System can contain up to 250 measuring units. The BMS unit accommodates up to 16 bearing monitoring channels and is operated under software control (SPM Condmaster®).

Each bearing monitoring channel is activated for a programmed interval (5 to 42 minutes). Readings are taken in a programmed sequence, which can comprise 50 channel numbers in any combination. The measuring unit stores up to 960 readings, i.e. min. 80 hours of readings. These are transferred to the PC for evaluation and display by Condmaster[®].

The measuring unit is designed for wall mounting and has a stainless steel housing with neoprene gaskets. It is connected to 230 or 115 V AC (nominal voltage $\pm 10\%$, even load, no excessive spikes).

Via data cables, the measuring units are connected in series, forming one or two local area networks (LAN) connected to the system unit. The shielded data cable must be installed in a suitable electrical environment.

A BMS measuring unit can be equipped with extra circuit boards for measuring speed or analogue signals. They are specified on other data sheets, see under Ordering numbers.

Technical data

Measuring range: Inputs / outputs:
Storage capacity: Dimensions: Weight: Housing:

Cable inlets: Temperature: Mains supply : Data cable: LR / HR, -19 to 99 dB_{sv} 16 bearing monitoring channels, LAN in / out 960 readings 330 x 248 x 72 mm 4.5 kg Stainless steel, neoprene gaskets, IP 65 Nickel plated brass 0°to 55°C (32°to 130°F) 230 or 115 V AC \pm 10%, 10 VA Shielded, 4 conductors twisted in pairs, area 0.22 mm² each. Max. cable length between measuring units 1000 m

Ordering numbers

- BMS-20 Measuring unit with 16 bearing channels
- BMS-21 BMS unit with RPM board, see TD-41
- BMS-23 BMS unit with AMS board, see TD-84
- 90220-L Data cable, temperature -20)°to +70)°C,
 - L = length in meters

CMS System: Measuring Unit VMS

Vibration monitoring

Measuring unit VMS is a part of the CMS System for continuous vibration monitoring. A CMS System can contain up to 250 measuring units. The VMS unit accommodates up to 8 vibration monitoring channels. The units are operated under software control (SPM Condmaster®). Each unit has 4 relay outputs for e.g. activating machine stop and 4 inputs for controlling the relay outputs.

The VMS unit measures vibration severity according to ISO 2372 (velocity in mm/s RMS, 10 to 1000 Hz). Each vibration channel is activated for a programmed measuring time (2-255 s). Readings are taken in a programmed sequence. The VMS unit stores up to 1000 readings per channel. These are transferred to the PC for evaluation and display by Condmaster[®].

The measuring unit is designed for wall mounting and has a stainless steel housing with neoprene gaskets. It is connected to a main power of 230 V or 115 VAC (nominal voltage $\pm 10\%$, even load, no excessive spikes).

Via data cables, the measuring units are connected in series, forming one or two local area networks (LAN) connected to the system unit. The shielded data cable must be installed in a suitable electrical environment.

A VMS measuring unit can be equipped with extra circuit boards for measuring speed and analogue signals. They are specified on other data sheets, see under Ordering numbers.

Technical data

Measuring range:	0 to 100 mm/s RMS
Inputs / outputs:	8 vibration monitoring channels,
	LAN in / out, 4 control inputs and
	4 relay outputs
Storage capacity:	1000 readings / channel
Dimensions:	330 x 248 x 72 mm
Weight:	4.5 kg
Housing:	Stainless steel, neoprene gaskets,
	IP 65
Cable inlets:	Nickel plated brass
Temperature:	Orto 55rC
Mains supply :	230 or 115 V AC \pm 10%, 10 VA
Relay:	Max. 50 V DC, 10 W alt.
	Max. 35 V AC, 10 VA
Data cable:	Shielded, 4 conductors twisted in
	pairs, area 0.22 mm² each. Max.
	cable length between units 1000 m

Ordering numbers

- VMS-22 VMS measuring unit, 8 vibration channels
- VMS-23 VMS unit with RPM board 13490, see TD-41
- VMS-24
- VMS unit with AMS board, see TD-84 90220-L
 - Data cable, temperature -201°to +701°C,
 - L = length in meter

Automatic speed measurement

Speed measurement in connection with a CMS System is used on machines with variable operating speeds, such as paper machines. The speed data allows for an automatic adjustment of shock pulse evaluation and alarm limits.

Rotational speed (r.p.m.) is measured by mounting an inductive proximity switch close to a rotating machine part, and connecting it to RPM board 13490 in the measuring unit. The RPM board is factory mounted in measuring unit BMS-21 and VMS-23. It can be installed in an existing BMS-20 unit with EPROM version 2.0 or higher, or in an exsisting VMS-22 unit.

The RPM board has four speed channels and measures the r.p.m. once per minute. The operating program checks the speed data every 25 seconds.

The r.p.m. can be stored in the system unit, to be used by any measuring unit in the CMS System (global speed, max. 8 per system). The r.p.m. can also be used for the monitoring channels in the measuring unit which contains the RPM board (local speed). Speed channel addresses are set in the operating program SPM Condmaster[®].

The proximity switch is not normally supplied by SPM. It can be of PNP or NPN type, input voltage 15 V. It can send from one pulse to max. 15 pulses per revolution. The number of pulses/revolution is set by a DIL switch for each active speed channel.

Technical data, ordering numbers

Measuring unit BMS-20 with RPM board 13490 installed has ordering number BMS-21. VMS-22 with installed RPM board has ordering number VMS-23.

RPM board 13490, installation set

13490	RPM Board (1)
12832	Spacer screw (5)
82204	Cable inlet, nickel plated brass (4)
81166	O-ring (4)

Please note: for BMS-20 without prepared inlet holes for RPM channels, order separately: 82127 Cable inlet, grey GAP (4)

RPM board 13490, data

Inductive proximity switch

Type: PNP or NPN (ex. Telemecanique XS1/XS2)

Cable, proximity switch to RPM board

 PVC type, 3 conductors, area 0,34 mm^2 each. Cable length up to 100 m.

The analogue RPM interface is a circuit board that is mounted on the digital RPM board, SPM no 13490. The interface converts input analogue RPM signals, in mA or V, from the input channels to digital measuring pulses suited for the SPM CMS system.

Each input signal is read per minute. The input signals are converted to max. 3825 pulses per minute and channel. The actual number of pulses is proportional to the input signal in comparison with the set measuring range. The RPM signal is then adjusted in the CONDMASTER program so that 3825 pulses corresponds to the maximum possible RPM value provided by the analogue input signal. The output signals consist of pulse trains proportional to the analogue RPM values.

The input signals are connected to the interface input terminals. The input signals are interchangeable by means of jumpers between the following measuring ranges:

0 - 1 V	0,2 - 1 V
0 - 10 V	2 - 10 V
0 - 20 mA	4 - 20 mA

The outputs are connected to the RPM board through cables from the output terminals. Power supply and earth are connected to their corresponding terminals on the RPM board. 3 spacer screws lock the interface to the RPM board.

Technical data:

Dimensions:	83.5 x 69 x 15 mm	
Temperature:	0 - 55YC (32Yto 130YF)	
Power supply:	15 V \pm 1 V DC via the RPM board	
No. of inputs:	4	
No. of outputs:	4	
Tolerance: \pm 5 % of the input signal		

Ordering numbers

Mounting kit SPM 13854 consists of:

Circuit board 13852	1
Jumper 93154	8
Spacer screw 82329	3
Screw MRX 3 x 5	3
Cable MKUX, 90114	0.7 m
Mounting instruction, 71489	1

CMS: Analogue measuring

Measuring of analogue values

The task of the analogue measuring unit of the CMS system is to read measuring values from max. 16 input analogue channels. It is an independent unit, with exception of power supply, consisting of a circuit board which is mounted on top of the BMS or VMS board by means of a special installation set. The board is power supplied through the tag-strip of the BMS or VMS board. No power supply unit exists. Control program is SPM Condmaster® Pro-

Inputs

Only one of the input channels can be open at a time. Measuring times, measuring sequence and active channels are selected from the control program.

Filing data

During the set measuring time all active channels are scanned and measured max. number in increasing order followed by the next scanning a. s. o. The measuring takes approx. one second per channel. The max., min. or average measured value on each channel is saved.

Alarm limits

Each channel has min. and max. value respectively as alarm limit to be set from the control program. Alarm is released if these limits are passed. The relay of the SYS unit can then also be activated. The alarms can be tracked and analyzed from Condmaster® Pro.

Communications

The contact with the computer proceeds through the multiple serial transmission of the CMS system in one or two local area networks (LAN). Its shielded communication cable should be installed in a suitable electric environment.

Technical data and ordering numbers

Measurement unit BMS-20 with the analogue board SPM 13863 mounted has ordering number BMS-23. VMS-22 with analogue board installed has ordering number VMS-24.

Analogue board kit SPM 13864

-	
13863	Analogue board (1)
12832	Spacer screws (7)
81166	O-ring (4)
82204	Cable inlet, nickel plated brass (4)
82221	Spacer screws (2)
82226	Screw M3 x 5 (7)
93174	Jumper (16)
71496	Mounting instruction
71497	Installation instruction (el)

NOTE! You can separately order cable inlets for the BMS-20 without pre-mounted analogue board : 82127 Cable inlet, grey GAP (4)

Analogue board SPM 13863, data

Dimensions:	w x d x h = 236 x 133 x 32 mm
Channels:	16 galvanically separated analogue
	inputs with 2 screw connectors each
Temp. range:	0Y- 55YC
Measuring range:	0 - 20 mA and 4 - 20 mA
	0 - 1 V and 0 - 10 V
Measuring time	
for active channel:	1 - 42.5 min.

Parameters controlled from Condmaster®Pro

- Υ Selection of active channels
- Y Tot. meas. time f. active channels (1 min. to 42.5 min.)
- Υ Selection of values to be saved
- Υ Setting of alarm limits (if used)
- Υ Setting the real time watch.
- Υ Setting of the measurement on and off

SPM

CMS: System Unit SYS-10

The system unit SYS-10 is the interface between the measuring units and the computer. It can accommodate up to 250 measuring units, connected in one or two local area networks (LAN).

The system unit is placed close to the computer equipment (max. cable length 10 m). Via a 9 pin RS-232 serial port, the system unit is connected to a modem or, normally, directly to the PC. The transmission rate is set by internal switches, 7 settings from 300 to 19 200 bits/second (baud rate).

On delivery, the unit is set for 230 V AC. An internal connector can be modified to set the unit for 115 V AC. A mains power cable is included. Power ON is indicated by a green light on the front panel, system alarm by a red light. An external warning circuit, triggered by a system alarm or loss of power, can be connected via a relay output. The relay (10 VA, 50 V, 0.5 A) is normally closed.

Technical data

Input:	2 LAN channels, max. 250 units
Output:	9 pin RS-232 serial port
Power supply:	230 or 115 V AC, 5 VA
Relay:	Max. 10 VA, 50 V, 0.5 A
Transmission rate:	300, 600, 1200, 2400, 4800,
	9600, 19200 bps
Casing:	ABS, black
Temperature:	0YC to + 55YC (32Yto 130YF)
Dimensions:	187 x 203 x 68 mm
	(7.5 x 8.1 x 2.7 in)
Weight:	0.9 kg (32 oz)

CMS: Computer Cables

Technical data are subject to change without notice. ISO 9001 certified. © Copyright SPM 2004-09. TD-44.B

Measuring Unit VCM20 for EVAM® Vibration Analysis

VCM20 is a continuous measuring unit for vibration analysis according to the EVAM[®] method. The unit is equipped with computer unit and multiplexing measuring logic. The software DAQ, installed on the computer, controls the measuring operations, data processing and storage.

VCM20 has 8 channels for vibration measurements and 8 channels for RPM measurements. The vibration channels can be used for SPM Spectrum when connected to the Bearing Monitoring Unit BMU-07. An additional circuit board, SPM 14393 or 14552, with 16 vibration channels can be mounted on top of the mother board. As vibration transducers, VCM20 accepts ICP type accelerometers with voltage output. RPM transducers are proximity switches, NPN or PNP.

Via Ethernet, VCM20 is connected to a computer with the software Condmaster[®] and DBL under Windows. The measuring assignments are set up in Condmaster[®]. The communication program DBL transmits measuring assignments to and reads the result file from the VCM20 unit.

Technical data

Processor:	AMD Geode 500 MHz
Memory:	256 MB RAM
Storage:	1 GB Compact Flash
Ethernet:	2 x 10/100 Mbit (RJ45)
Interface for:	Monitor (VGA), mouse (PS/2), key- board (PS/2)
Operating system:	Windows XP Embedded
RPM channels:	8
Vibration channels:	8, or 24 with additional board
Sampling methods:	Asynchronous, synchronous with programmable time averaging
Frequency ranges FFT:	0 to 100, 200, 500, 1000, 2000, 5000, 10 000, 20 000 Hz
Envelope frequencies:	100, 200, 500, 1000, 2000, 5000, 10 000 Hz
Measurement windows:	Rectangle, Hanning, Hamming, Blackman, Exact Blackman, Kaiser- Bessel, Flat 4, Parzen, Welsh
Resolution, lines:	200, 400, 800, 1600, 3200, 6400
Antialising filter:	> 80 dB/octave
Vibration transducer:	SLD144 or ICP type accelerometers with voltage output

Transducer supply: 4 mA, +24 V DC Transducer input: Max. 12 V peak-peak (e.g. 600 m/s² peak for sensitivity 10 $mV/m/s^2$) Transducer line test: Short and open circuit (transducers type SLD and TRV-20/21) **RPM transducer:** Proximity switch, PNP or NPN, supply 12 V DC from VCM20 RPM measuring range: 10 – 60000 rpm Analog input: 12 channels, 0 to 20 mA (option) SPM Spectrum channels: 7 or 14 with BMU-07 units (option) Power supply: 115 / 230 V AC Operating temperature: 0 to +40 °C (32 to 104 °F) -20 to +80 °C (-4 to 176 °F) Storage temperature: 10% to 90% (non-condensing) Relative humidity: Housing: Enamelled steel, IP 52 Cable inlets: Nickel plated brass 400 x 520 x 210 mm Dimensions (w x h x d): approx. 20 kg Weight:

VCM20-XXWXXS

Ordering number

Vibration channels, 8 or 24 (24 with additional circuit board) Additional analog modules NuDAM W = 12 channels, 4-20 mA inputs Transducer inputs on mother board A = terminal strip for coaxial cables B = screw terminals C = SMB connectors Transducer inputs on additional circuit board A = terminal strip for coaxial cables B = screw terminals Bearing monitoring units, BMU-07 **S** = 1 unit, incl. power supply unit T = 2 units, incl. power supply unit 14393 Additional circuit board, 16 vibration channels with terminal strip for coaxial cables

- 14552 Additional circuit board, 16 vibration channels with screw terminals
- 14927 Additional analog units, 12 channels 0-20 mA current inputs

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com Technical data are subject to change without notice. ISO 9001 certified. © Copyright SPM 2007-08. TD-123 B
SPM Spectrum on-line

The purpose of 'SPM Spectrum' is to verify the source of high shock pulse readings. In addition to high magnitudes, shocks generated by damaged bearings will typically have an occurrence pattern matching the ball pass frequency over the rotating race. Shocks from e. g. damaged gears have different patterns, while random shocks from disturbance sources have none.

Signal and measurement

The resonance frequency of the SPM shock pulse transducer, calibrated to 32 kHz, constitutes the ideal carrier wave for transients caused by shocks. The output of this transducer is the same type of demodulated signal produced by 'enveloping', with this important difference: both frequency and amplitude response of the SPM transducer are precisely tuned, so there is no need to find uncertain and shifting machine resonances to get a signal.

Signal to on-line system

The on-line measuring unit VCM20 measures vibration and has spectrum analysis capacity. This measuring unit can receive **processed** signals from up to 168 shock pulse measuring points, make the spectrum analysis and convey the data to the monitoring software Condmaster[®].

To achieve this, up to 24 Bearing Measuring Units BMU-07, each with 7 SPM channels, are slaved to the VCM20-24C. These units measure the shock magnitude by a standard shock pulse measurement with the dBm/dBc or the LR/HR method. The raw values are transmitted to VCM20, together with the enveloped shock signal.

In the VCM20, this signal is subjected to a Fast Fourier Transform (FFT). The resulting spectrum is used for pattern recognition only. Spectrum line amplitudes are influenced by too many factors to be reliable condition indicators, so all condition evaluation is based on the dBm/dBc or LR/HR values.

Spectrum types

One unit for amplitude in an SPM spectrum is S_D (Shock Distribution unit), and each spectrum is scaled so that the total RMS value of all spectrum lines = 100 S_D = the RMS value of the time record. The alternative is S_L (Shock Level unit), the RMS value of the frequency component in decibel. One can select linear or power spectra with up to 6400 lines, with frequency ranges from 0 – 100 Hz to 0 – 20 000 Hz.

Pattern recognition

Finding a line or line pattern in a spectrum is a purely mathematical procedure where the rpm is one factor and the specified bearing frequency is the other. SPM has automated the process so anybody can use it fast.

The rpm is measured by VCM20. The factors defining the bearing frequencies are automatically obtained from the bearing catalogue in Condmaster[®] by stating the ISO standard bearing number. The frequency patterns of bearings are also preset in Condmaster[®]. Linking the symptom group 'Bearing' to the measuring point will allow the user to highlight the following bearing patterns by clicking on their name:

BPFO	Ball pass frequency over the outer race
BPFOM	Ball pass frequency outer race, rpm modulated
BPFI	Ball pass frequency over the inner race
BPFIM	Ball pass frequency inner race, rpm modulated
BSF	Double ball spin frequency
BSFM	Double ball spin frequency, rpm modulated

FTF Fundamental train frequency.

Other symptoms can be added when appropriate, e.g. for gear mesh patterns. Finding a clear match of a bearing symptom in the spectrum is proof that the measured signal originates from the bearing.

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 225 00 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

Bearing Monitoring Cabinet BMC01-X

3. Power supply unit

The Bearing Monitoring Cabinet BMC01-X accommodates up to eight BMU-07 with up to 7 bearing monitoring channels each. It is mounted next to the host unit VCM20-8C or VCM20-24C. The connecting cables have a length of 2 m.

BMC01-X (X = the number of BMU-07 it contains when ordered) is delivered fully equipped and wired. Its power supply unit transforms 100-240 V AC to 5 V DC supply current for the BMU units.

The positions of the BMU units are fixed, starting with BMU 1 in the upper left hand corner. This position is connected via the RS232 terminal to the VCM20 unit. The envelope signal cable from BMU 1 is connected to measuring channel 1 in the VCM20. The 7 bearing measuring channels under BMU 1 are automatically recognized as sub-channels 1 through 7 under VCM channel 1. Via software setting, each can be linked to one of the rpm channels of the VCM20.

The following BMU units are connected in series to BMU 1, using the short I2C cable SPM 46065 for all but BMU 4 and BMU 6, which requires SPM 46066. The connection to the VCM20 is as for BMU 1, using VCM channels 2 to 8. Each BMU unit requires a cable inlet SPM 82370 with rubber sealing SPM 81317, plus an envelope signal cable SPM 46064.

BMU 6 to 8 are mounted on an upper rail, SPM 14820 with spacer set SPM 14856, ordered with BMU 6. Please note that accessories are ordered separately only when BMC01 is later equipped with more BMU units.

The system can be expanded to max. 3 cabinets (type BMC01-XB) by using the bus expander kit SPM 15070.

- 4. Bearing monitoring units BMU-07
- 5. SMB connector for enveloped shock signal to VCM20
- Extra mounting rail for BMU-07 units 6, 7 and 8 6.

Technical data

Bearing Monitoring Units:	1 to 8 BMU-07 (max. 56 channels)
Interfaces:	serial I2C between BMU-07 units, RS232 to VCM20
Power supply unit:	input 100 – 240 V AC, 0.45 A, 50/60 Hz, output 5 VDC, 1.5 A
Operating temperature:	-10 to 60 °C
Housing:	enamelled steel, IP 65
Cable inlets:	nickel plated brass
Dimensions (w x h x d):	500 x 483 x 223 mm
Software requirements	
Condmaster®:	from version 4.0
VCM20 software:	from version 2.04
Hardware requirements	
VCM20-8C/VCM20-24C:	cirquit board no. 14389-003, 14389- 013 or higher with firmware version 1.03 or higher.
Ordering numbers	

Ordering numbers

BMC01-X Bearing Monitoring Cabinet, X=1 to 8 BMU-07, fully equipped and wired.

Accessories for extra BMU-07

46064	Envelope signal cable to VCM, 2 m, coaxial, SMB			
46065	I2C cable for serial connection of BMU-07, short for			
	units in positions 2, 3, 5, 7, 8			
46066	I2C cable for serial connection of BMU-07, long for			
	units in positions 4, 6			
82370	Cable inlet PG29			
81317	Rubber sealing for cable inlet 82370			
_				
Extra mounting rail for BMU unit in position 6:				
14820	Mounting rail, DIN 450 mm			
14856	Spacers for mounting rail, set of 3 incl. screws			

Bus expander kit for BMC01-X:

- 15070 The kit includes Bus Expander 15062, screw terminals (4), cable inlet and internal cables, for connection of an additional cabinet of type BMC01-XB to BMC01-X.
- 90297-L Twisted 3-pair cable with shield (L = length in meters)

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

Bearing Monitoring Cabinet BMC01-XB

- 4 Power supply unit
- 4. Power supply unit

The Bearing Monitoring Cabinet BMC01-XB with bus expander accommodates up to eight BMU-07 with up to 7 bearing monitoring channels each. It is mounted next to the host unit VCM20-24C. The connecting cables have a length of 2 m.

BMC01-XB (X = the number of BMU-07 it contains when ordered) is delivered fully equipped and wired. Its power supply unit transforms 100 - 240 V AC to 5 V DC supply current for the BMU units.

The positions of the BMU units are fixed, starting with BMU 1 in the upper left hand corner. This position is connected via the RS 232 terminal to the VCM20-24C. The envelope signal cable from BMU 1 is connected to measuring channel 1 in the VCM20-24C. The 7 bearing measuring channels under BMU 1 are automatically recognized as sub-channels 1 through 7 under VCM channel 1. Via software setting, each can be linked to one of the rpm channels of the VCM20-24C.

The following BMU units are connected in series to BMU 1, using the short I2C cable SPM 46065 for all but BMU 4 and BMU 6, which requires SPM 46066. The connection to the VCM20-24C is as for BMU 1, using VCM channels 2 to 8. Each BMU unit requires a cable inlet SPM 82370 with rubber sealing SPM 81317, plus an envelope signal cable SPM 46064.

BMU 6 to 8 (14 to 16, 22 to 24) are mounted on an upper rail, SPM 14820 with spacer set SPM 14856, ordered with BMU 6. Please note that accessories are ordered separately only when BMC01 is later equipped with more BMU units.

- 5. Bearing monitoring units BMU-07
- 6. SMB connector for enveloped shock signal to VCM20-24C
- 7. Extra mounting rail for BMU-07 units 6 (14, 22), 7 (15, 23)
 - and 8 (16, 24)

Technical data

1 to 8 BMU-07 (max. 56 channels)
serial I2C between BMU-07 units, RS232
to VCM20-24C
for connection of an additional BMC01-
XB (max. 3 BMC01-XB / 168 channels)
input 100 – 240 V AC, 0.45 A,
50/60 Hz, output 5 V DC, 1.5 A
-10 to 60 °C
enamelled steel, IP 65
nickel plated brass
500 x 483 x 223 mm
from version 4.0
from version 2.04
cirquit board no. 14389-003, 14389-
013 or higher with firmware version
1.03 or higher.

Ordering numbers

BMC01-XB	Bearing Monitoring Cabinet with bus expander, X=1 to 8 BMU-07, fully equipped and wired.
90297-L	Twisted 3-pair cable with shield ($L = length$ in meters)
Accessories	s for extra BMU-07
46064	Envelope signal cable to VCM, 2 m, coaxial, SMB
46065	I2C cable for serial connection of BMU-07, short for units in positions 2, 3, 5, 7, 8
46066	I2C cable for serial connection of BMU-07, long for units in positions 4, 6
82370	Cable inlet PG29
81317	Rubber sealing for cable inlet 82370

Extra mounting rail for BMU unit in position 6 (14, 22)

14820	Mounting rail, DIN 450 mm
14054	Concerns for an exaction well not of 2 in all serves

CE

Bearing Monitoring Unit BMU-07

The Bearing Monitoring Unit BMU-07 is part of the CMS System for on-line machine condition monitoring. It has 7 multiplexing channels for shock pulse measurements on rolling element bearings, connected to SPM shock pulse transducers of type 42000 (cable length max. 100 m).

BMU-07 is slaved, in groups of up to 8 units, to the Measuring Unit VCM20 which transfers measuring instructions and measurements between the controlling software Condmaster[®] and the BMU-07.

BMU-07 measures shock pulses magnitude in dBsv (decibel shock value) according to the selected SPM method (dBm/ dBc or LR/HR), plus the TLT value showing the transducer line quality. In addition, the BMU-07 transmits the enveloped shock pulse signal to the VCM20 unit for FFT analysis.

Communication with VCM20

The BMU-07measures on request from the VCM20 unit and transmits data via an RS 232 interface (measuring instructions, shock and TLT values) and a coaxial cable (enveloped shock pulse signal for FFT analysis). When several BMU-07 units are used, the RS 232 interface are connected in series via I2C cables, with a common RS 232 interface to the VCM20.

Bearing condition evaluation

BMU supplies unnormalized values for shock magnitude and the enveloped shock pulse signal. The VCM20 unit measures the bearing speed, calculates the SPM Spectrum, and evaluates the bearing's operating condition. Measurement conditions are set up in Condmaster[®]. These include shock pulse method, spectrum type, symptoms for bearing fault recognition and alarm limits. The VCM20 settings control measuring sequence, measuring intervals and data recall times from the hardware to the condition monitoring program.

Technical data

Measuring methods:	Shock pulse measurement, dBm/dBc or LR/HR, and SPM Spectrum
Measuring range:	-9 to 99 dBsv (dBm/dBc) -19 to 99 dBsv (LR/HR)
Resolution:	1 dBsv
Measuring channels:	7
Transducer type:	SPM type 42000
Transducer input:	SMB connector, coaxial cable length max. 100 m
Shock signal output:	SMB connector, coaxial cable length max. 2.5 m
Fault indication:	Transducer line test of measuring circuit quality
Interface:	Serial communication I2C between BMU-07 units, RS 232 to VCM20
Power supply:	5 V DC ±10%
Temperature range:	-10° to 60° C
Dimensions:	139 x 145 x 46 mm

Software

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com Technical data are subject to change without notice. ISO 9001 certified. \circledcirc SPM Instrument AB. 71700 B

Condmaster[®]Nova - Platform

Condmaster®Nova is a comprehensive condition monitoring and predictive maintenance program. Module built, it can be tailored, in performance and price, to your selected hardware.

Condmaster®Nova communicates with all SPM handheld data logging instruments and online systems for continuous condition monitoring.

Condmaster®Nova is available for single users and for networks (Windows compatible). It works under Windows XP, Vista and uses SQL Server 2000 as database handler, included on the installation disks.

The Condmaster®Nova platform includes the measuring techniques

- ISO2372 vibration measurement
- 2 user defined measurements, with special input window for temperature (data input as analogue voltage or current, or manual)
- Checkpoint (free text describing maintenance activity). It also has a runtime counter for the operating hours of a machine.
- Contact free identification tags, CondID[®], can be loaded with basic data and the latest measuring results.

Further modules (see TD-231 through TD-245, TD-278, TD-280 and TD-281) can be added as needed, for either limited or unlimited use.

The basic menu guided program functions are:

- Measuring point definition, using a customer defined numbering system and including input data for all active measuring techniques.
- Graphical overview, showing the measuring points'

location as a hierarchical structure, from plant down to machine level. The measuring point status is shown as a green - yellow - red dot.

- Creation of measuring rounds and communication with the measuring instrument (data logging, time planning).
- Display and print out of all measuring results as graphics and lists.
- Creation of alarm messages and lists, statistics and reports.

Minimum hardware requirements, Windows XP:

- PC with 233 MHz Intel Pentium/Celeron processor (>300 MHz recommended), 64 MB RAM (>128 MB recommended) and 1,5 GB available hard disk space
- Colour display adapter min. SVGA, 600 x 800 pixels

Minimum hardware requirements, Windows Vista:

- 1 GHz 32-bit (x86) or 64-bit (x64) processor
- 1 GB of RAM memory
- 40 GB hard drive with at least 15 GB of available space
- Support for DirectX 9 graphics with:
 - WDDM Driver
 - 128 MB of graphics memory (minimum)
 - Pixel Shader 2.0 in hardware
 - 32 bits per pixel

Ordering number

PRO118 Condmaster®Nova, Platform

Condmaster®Nova - Modules

Condmaster®Nova is modular. It can be tailored, in performance and price, to your selected hardware and technical requirements.

The Condmaster®Nova platform includes the measuring techniques Vib ISO 2372, two user defined measurements (data input as analogue voltage or current, or manual), and Checkpoint (free text describing maintenance activity), all for unlimited use. It also has a runtime counter for the operating hours of a machine.

All additions to the platform functions are ordered from the list below, for either unlimited or limited use. Modules can be bought at any time as update files.

Limited use (for Leonova instruments only) implies that credits are deducted each time the function is used in the measuring instrument. For online system Intellinova, limited use is time based. Part of your investment can thus be turned into operating costs by buying "measuring credits" instead of paying for an unlimited program.

TD	Module	Art no. Unlimited use /	Goes with instruments/system								
sheet No.		Art no. Limited use	T2001	A2010	Т30	A30	Leonova	Leonova Infinity	VCM	CMS	Intelli- nova
TD-230	Platform	PRO118 /	х	х	х	х	х	х	х	x	х
TD-232	dBm/dBc	MOD130 / MOD230	х		х		х	х	+ BMU		х
TD-233	LR/HR and Lubmaster	MOD131 / MOD231		х		х	х	х	+ BMU	x	х
TD-234	SPM Spectrum	MOD132 / MOD232					х	x	+ BMU		х
TD-235	Vibration ISO 10816	MOD133 / MOD233					х	х			х
TD-236	FFT with symptoms	MOD134 / MOD234			T30-3	A30-3	х	х	х		x
TD-237	EVAM and time signal	MOD135 / MOD235			T30-3	A30-3	х	x	x		x
TD-238	2 channel simult. vibration	MOD136 / MOD236						х			x
TD-239	Run up/coast down, bump test	MOD137 / MOD237						x			
TD-240	Orbit analysis	MOD138 / MOD238						х			x
TD-241	12800 lines, 40 kHz	MOD139 /						x			x
TD-242	Online, CMS	MOD182 /							x	x	
TD-243	Web and e-mail alarms	MOD183 /	х	х	х	х	х	х	х	x	х
TD-244	SAP link	MOD184 /	х	х	х	х	х	х	х	x	х
TD-245	Rule Based Evaluation, RBE	MOD181 /	х	х	х	х	х	х	х	х	х
TD-278	AMOS link	MOD185 /	х	x	х	х	х	x	х	x	х
TD-280	Plant Performer	MOD186 /	х	х	х	x	х	x	х	x	x
TD-281	Intellinova	MOD187 /									x
TD-305	Order Tracking	MOD188 /						х			

Condmaster[®]Nova - dBm /dBc

For over 35 years, the original Shock Pulse Method (SPM) has been very successfully used to obtain a fast, easy and reliable diagnosis of the operating condition of rolling element bearings.

The signal

Throughout their lifetime, bearings generate shocks in the interface between the loaded rolling element and the raceway. These shocks 'ring' the SPM transducer which outputs electric pulses proportional to the shock magnitude.

Unlike vibration transducers, the shock pulse transducer responds at its carefully tuned resonance frequency of about 32 kHz, which allows a calibrated measurement of the shock pulse amplitudes.

Measurement

The shock pulse meter counts the rate of occurrence (incoming shock pulses per second) and varies the measuring threshold until two amplitude levels are determined:

- the shock carpet level (approx. 200 incoming shocks per second. This level is displayed as **dBc** (decibel carpet value).
- the maximum level (highest incoming shock under 2 seconds). This level is displayed as **dBm** (decibel maximum value). Using a blinking indicator or earphones, the operator can establish a peak value by increasing the measuring threshold until no signal is registered.

Because of the very large dynamic range, shock pulses are measured on a decibel scale (1000 x increase between 0 and 60 dB).

Shock pulse amplitude is due to three basic factors:

- Rolling velocity (bearing size and rpm)
- Oil film thickness (separation between the metal surfaces in the rolling interface). The oil film depends on lubricant supply and also on alignment and pre-load.
- The mechanical state of the bearing surfaces (roughness, stress, damage, loose metal particle).

Input data

The effect of rolling velocity on the signal is neutralized by giving rpm and shaft diameter as input data, with 'reasonable accuracy'. This sets an initial value (dBi), the start of the 'normalized' condition scale.

Evaluation

The initial value and the range of the three condition zones (green - yellow - red) was empirically established by testing bearings under variable operating conditions. The maximum value places the bearing into the condition zone. The height of the carpet value and delta (dBm minus dBc) indicated lubrication quality or problems with bearing installation and alignment.

Ordering numbers

MOD130 dBm/dBc, unlimited use MOD230 dBm/dBc, limited use

The LR/HR method was developed from the original Shock Pulse Method for condition diagnosis of rolling element bearings. It allows a precision analysis of oil film condition in the rolling interface and contains calculation models for finding the optimal lubricant. Poor lubrication is the root cause of most bearing failures.

Signal and measurement

Transducer and measuring procedure are the same as for the dBm/dBc method (TD-232). The shock pulse meter counts the rate of occurrence (incoming shock pulses per second) and varies the gain until two amplitude levels are determined:

- HR = high rate of occurrence, quantifying the shock carpet (approx. 1000 incoming shocks per second).
- LR = low rate of occurrence, quantifying the strong shock pulses (approx. 40 incoming shocks per second).

LR and HR are 'raw values', measured in dBsv (decibel shock value).

Input data

The LR/HR method requires more precise data on the bearing, because bearing geometry, as well as size and speed, affect the shock carpet and thus the analysis of oil film condition in undamaged bearings. The rpm is needed, plus a definition of the bearing type and size. This is best input by stating the ISO bearing number, which links to the bearing catalogue in Condmaster.

Evaluation

After measurement the measuring device returns

- a general description of bearing condition (CODE)
- a value for oil film condition (LUB)
- a value for surface damage (COND)

A LUB no. of 0 means dry running, the value increases with oil film thickness. A COND no. of around 30 indicates surface stress or early damage, the value increases with damage severity. The general assessment is:

CODE AGood bearingCODE BPoor lubricationCODE CDry bearing, risk of damageCODE DDamage

A program part, LUBMASTER, uses the shock values plus data on lubricant type, viscosity, load and operating temperature to calculate the bearing's life expectancy under present condition. It also calculates the effect of changes in oil type and viscosity.

Calibration

The accuracy of the LR/HR method is increased by a calibration factor (COMP no.) used in case of bearings with minimal load or poor quality measuring points (in both cases the signal strength is below normal). On the basis of the bearing's catalogue data and the lubricant properties, Leonova calculates the normal shock level for a good bearing and compensates for an abnormally low signal before returning the evaluation results.

Ordering numbers

MOD131 LR/HR, unlimited use MOD231 LR/HR, limited use

Condmaster®Nova - SPM Spectrum

The purpose of 'SPM Spectrum' is to verify the source of high shock pulse readings. Shocks generated by damaged bearings will typically have an occurrence pattern matching the ball pass frequency over the rotating race. Shocks from e. g. damaged gears have different patterns, while random shocks from disturbance sources have none.

Signal and measurement

The resonance frequency of the SPM shock pulse transducer, calibrated to 32 kHz, constitutes the ideal carrier wave for transients caused by shocks. The output of this transducer is the same type of demodulated signal produced by 'enveloping', with this important difference: both frequency and amplitude response of the SPM transducer are precisely tuned, so there is no need to find uncertain and shifting machine resonances to get a signal.

Leonova first measures the shock amplitude by a shock pulse measurement with the dBm/dBc or the LR/HR method. The results are the bearing condition data, evaluated green - yellow - red.

The second measurement produces a time record that is subjected to a Fast Fourier Transform (FFT). The resulting spectrum is used mostly for pattern recognition. Spectrum line amplitudes are influenced by too many factors to be reliable condition indicators, so all condition evaluation is based on the dBm or the HR values.

One unit for amplitude in an SPM spectrum is ${\rm S}_{\rm D}$ (Shock Distribution unit), where each spectrum is scaled so that

the total RMS value of all spectrum lines = 100 S_{D} = the RMS value of the time record. The alternative is S_L (Shock Level unit), the RMS value of the frequency component in decibel. Alarm levels are manually set for each symptom to show evaluated results in green - yellow - red. Various types of spectra can be produced. The recommended setting is a spectrum with a resolution of at least 0.25 Hz, e. g. 3200 lines over 500 Hz, saving peaks only.

Input data

Pattern recognition demands precise data on the bearing and exact measurement of the rpm. The rpm should be measured, not preset. The factors defining the bearing frequencies are obtained from the bearing catalogue in Condmaster by stating the ISO bearing number.

Evaluation

The frequency patterns of bearings are preset in Condmaster. Linking the symptom group 'Bearing' to the measuring point allows the user to highlight a bearing pattern by clicking on its name. Other symptoms can be added when appropriate, e. g. for gear mesh patterns. Finding a clear match of a bearing symptom in the spectrum is proof that the measured signal originates from the bearing.

Ordering numbers

MOD132 SPM Spectrum, unlimited use MOD232 SPM Spectrum, limited use

Condmaster[®]Nova - ISO Standard vibration monitoring

Broad band vibration measurement is the most widely used and cost-efficient method for the diagnosis of general machine condition.

There are two ISO recommendations concerning machine condition monitoring by this type of measurement, the much used ISO 2372 and the more recent ISO 10816, which is a replacement of the older standard.

With Condmaster, ISO 2372 measurement is a platform function, always included for unlimited use (see TD-230).

ISO 10816 is an option with ordering numbers MOD133 (unlimited use) and MOD233 (limited use).

Features of ISO 10816 are:

- Measurements are made in three direction (horizontal, vertical, axial).
- Machine condition is generally diagnosed on the basis of broad band vibration measurements returning an RMS value. ISO 10816 keeps the lower frequency range flexible between 2 and 10 Hz, depending on the machine type. The upper frequency is 1000 Hz.

- ISO 10816 operates with the term vibration magnitude, which, depending on the machine type, can be an RMS value of vibration velocity, acceleration or displacement. If two or more of these parameters are measured, vibration severity is the one returning the relative highest RMS value. For certain machines, ISO 10816 also recognises peak-to-peak values as condition criteria.
- The standard consists of several parts, each treating a certain type of machines, with tables of limit values differentiating between acceptable vibration (green range), unsatisfactory vibration (yellow range), and vibration that will cause damage unless reduced (red range).

In Condmaster, ISO part, machine group and foundation type are input using a multiple choice guide which displays the various ISO definitions and leads to the limit values.

Exceeding the requirements of the ISO standard, Condmaster also provides a 1600 line **spectrum**.

Ordering numbers

MOD133 VIB ISO 10816 and spectrum, unlimited use MOD233 VIB ISO 10816 and spectrum, limited use

Condmaster[®]Nova - FFT with symptoms

FFT Spectrum with Symptoms is a vibration analysis function offered with Leonova and Intellinova, for either limited or unlimited use. It is a reduced form of EVAM (Evaluated Vibration Analysis Method), lacking the statistical evaluation by means of criteria (described in TD sheet TD-237).

This function generates three sets of machine condition data:

- Condition parameters, which are measured and calculated values from the time domain, describing various aspects of machine vibration.
- Vibration spectra where significant line patterns are found, highlighted and evaluated with the help of preset fault symptoms.
- Trending of symptom values. Alarm levels are manually set for evaluation in green-yellow-red.

For each measuring point, users can make an individual selection and define the type of data best suited for the surveillance of an individual machine. Alternatives include:

- FFT
- enveloping
- time synchronous averaging
- band alarms and averaging of measurement results for improved alarm reliability. Random high readings caused by resonance or other sources of disturbance are filtered out, minimizing the number of false alarms.

Condition parameters

Condition parameters are measured for a selected frequency range. They can be individually activated and are shown in measuring result tables and as diagrams. Available are:

- VEL RMS value of vibration velocity
- ACC RMS value of vibration acceleration
- DISP RMS value of vibration displacement

- CREST Crest value, difference between peak and RMS
- KURT Kurtosis, the amount of transients in the vibration signal
- SKEW Skewness, the asymmetry of the vibration signal
- NL1 4 Noise level in the four quarters of the frequency range.

Peak and peak-to-peak values are shown in the unit selected for the time signal.

Spectrum analysis with symptoms

For easy pattern recognition in spectra, a range of ready made 'fault symptoms' are available in Condmaster. These are instructions to highlight a spectrum line pattern and display the sum of the lines' RMS values as a symptom parameter (which can be trended).

Most symptoms are automatically configured by using the rpm as a variable, for some an input is needed, e. g. the number of vanes on a rotor.

Phase measurement

A phase is a time delay expressed in degrees of rotation. Leonova Infinity or Intellinova calculates the time delay between the passage of the tachometer pulse and the peak of the frequency component of interest from the vibration transducer at the speed of rotation. The value presented is a relative angle, not an absolute, because there is no compensation for phase lag in the transducer or the electronic circuits.

Ordering numbers

MOD134 FFT with symptoms, unlimited use MOD234 FFT with symptoms, limited use

Condmaster[®]Nova - EVAM and Time Signal

EVAM stands for Evaluated Vibration Analysis Method. With Leonova and Intellinova, the EVAM method is offered as an analysing function with either limited or unlimited use.

The EVAM method generates three sets of machine condition data:

- Condition parameters, which are measured and calculated values describing various aspects of machine vibration.
- Vibration spectra where significant line patterns are found, highlighted and evaluated with the help of preset fault symptoms.
- Machine specific condition codes (green, yellow, red) and condition values, based on a statistical evaluation of the condition parameters and symptom values.

For each measuring point, the user can make an individual selection and define the type of data best suited for the surveillance of an individual machine. Alternatives include:

- enveloping
- time synchronous averaging
- band alarms and averaging of measurement results for improved alarm reliability.

Random high readings caused by resonance or other sources of disturbance are filtered out, minimizing the number of false alarms.

Condition parameters

Condition parameters are measured for a selected frequency range. They can be individually activated and are shown in measuring result tables and as diagrams. Available are:

- VEL RMS value of vibration velocity
- ACC RMS value of vibration acceleration
- DISP RMS value of vibration displacement
- CREST Crest value, difference between peak and RMS
- KURT Kurtosis, the amount of transients in the vibration signal

SKEW Skewness, the asymmetry of the vibration signal

NL1 - 4 Noise level in the four quarters of the frequency range.

Peak and peak-to-peak values are shown in the unit selected for the time signal.

Spectrum analysis with 'symptoms'

For easy pattern recognition in spectra, EVAM supplies a range of ready made 'fault symptoms'. These are instructions to highlight a spectrum line pattern and display the sum of the lines' RMS values as a symptom parameter (which can be evaluated and trended). Most symptoms are automatically configured by using the rpm as a variable, for some an input is needed, e. g. the number of vanes on a rotor. Suitable symptoms and symptom groups are selected from a menu in Condmaster when the measuring point is set up.

Machine specific condition codes

In Condmaster, alarm limits can be set on all active parameters. Once measuring results are collected, an EVAM 'criterion' can be created that compares new parameter values with the statistical mean value and displays a dimensionless condition value against a green - yellow - red scale.

Phase measurement

A phase is a time delay expressed in degrees of rotation. Leonova Infinity or Intellinova calculates the time delay between the passage of the tachometer pulse and the peak of the frequency component of interest from the vibration transducer at the speed of rotation. The value presented is a relative angle, not an absolute, because there is no compensation for phase lag in the transducer or the electronic circuits.

Ordering numbers

MOD135 EVAM + Time Signal, unlimited use MOD235 EVAM + Time Signal, limited use

Condmaster®Nova - Two-channel simultaneous vibration

Two channel simultaneous vibration monitoring is a Condmaster®Nova function for limited (MOD236) or unlimited (MOD136) use. It requires that either the measuring technique 'FFT with symptoms' or 'EVAM' is active.

This type of measurement allows the user to study machine movement in two dimensions by observing the difference of the phase angles measured on the two channels.

Measurement requires the set-up of two vibration assignments with identical parameters. The two-channel measuring cable CAB51 is used to connect both transducers to the Leonova vibration transducer input. The procedure is the same as for the corresponding measurement with a single transducer. For online system Intellinova, two-channel measurement is set up using one even-numbered and one odd-numbered channel.

Condmaster[®]Nova displays the RMS values for DISP, VEL and ACC for both channels. Three graphs are available for each measurement:

- Spectrum
- Phase spectrum
- Time signal

The two cursors show the difference in phase angle at the actual frequency. A phase is a time delay expressed in degrees of rotation. Leonova Infinity or Intellinova calculates the time delay between the passage of the tachometer pulse and the peak of the frequency component of interest from the vibration transducer at the speed of rotation. The value presented is a relative angle, not an absolute, because there is no compensation for phase lag in the transducer or the electronic circuits.

In the spectrum and the time signal, the channels are overlayed red and blue.

Ordering numbers

- MOD136 Two-channel simultaneous vibration, unlimited use
- MOD236 Two-channel simultaneous vibration, limited use

Condmaster®Nova - Run up/Coast down and Bump test

Run up / coast down measurements and Bump test are two vibration analysis functions offered with Leonova Infinity, for either limited or unlimited use. Run up / coast down is also available with online system Intellinova.

Run up/coast down

Run up/coast down records the changes in vibration while the machine is run up to operating speed or after it has been shut off and is slowing down.

For this test, both the signal unit and the display unit for the spectrum can be selected.

The measuring interval can be either time based (interval in seconds) or speed based (interval in rpm). The speed range is also chosen, e. g. 400 to 3000 rpm.

A waterfall diagram can be viewed after the measurement is done. For each individual measurement, a spectrum can be called up.

A **Nyquist diagram** shows the phase angle and amplitude. A phase is a time delay expressed in degrees of rotation. Leonova Infinity calculates the time delay between the passage of the tachometer pulse and the peak of the frequency component of interest from the vibration transducer at the speed of rotation. The value presented is a relative angle, not an absolute, because there is no compensation for phase lag in the transducer or the electronic circuits.

Finally, the user can call up a **Bode diagram** for vibration amplitude and angle, showing all measurements in time sequence. In all diagrams, a blue dot shows the position of the measurement marked on the list.

Bump test

The bump test is employed to check out the typical vibration response of a machine structure at standstill, by hitting it e.g. with rubber mallet (bump test).

The user sets the measuring range in Hz, which automatically sets the sampling time, e. g. 0.20 seconds for 2000 Hz/400 lines. A pre-trigging time, 5% to 25% of the sampling time, is also chosen.

The gain level is set by hitting the machine frame with varying force. The peak amplitude of the measured signal is displayed (velocity in mm/s) and a trigger level can be set to 1% - 90% of the amplitude.

The actual test returns an FFT spectrum and a time signal (sampling time plus pre-trigging time).

The spectrum can be stored as reference spectrum for any measuring assignment.

Ordering numbers

- MOD137 Run up/Coast down and Bump test, unlimited use
- MOD237 Run up/Coast down and Bump test, limited use

Condmaster[®]Nova - Orbit Analysis

Orbit analysis is a vibration measurement function offered with Condmaster® Nova, for either limited (MOD138) or unlimited use (MOD238). The resulting orbit graph shows the movement of the shaft's centerline and is used to detect failures like rubs, unbalance, misalignment or oil whip on machinery with journal bearings.

The measurements are normally made with Leonova Infinity or Intellinova on the buffered outputs of a machine protection system via the Orbit Interface 15315. Measurements can also be made with e. g. accelerometers to get a two dimensional graph of machine movement. Required are two channel simultaneous vibration measurement and two transducers placed at an angle of 90° to each other, plus a trigger signal from a tachometer probe.

Settings include transducer type, signal unit and filter type, either bandpass (default) or lowpass. Orders is set to 1 by default, but the user can select from 1 to 5 orders. The number of revolutions parameter, max. 25, specifies the number of shaft revolutions to acquire and display in the orbit graph. The orbit graph shows an overlay of the graphs for each measured revolution plus their average. The user can select each individual revolution as well as the average of all revolutions.

The selected graph is marked blue, with a blue arrow showing the angle and the x/y values at that angle. The user can move the arrow on the screen with the mouse in the orbit graph.

When the orbit assignment is set up in Condmaster[®]Nova, alarm limits can be set on the X and Y axis, resulting in an evaluated measurement (green - yellow- red scale).

Ordering numbers

MOD138 Orbit analysis, unlimited use MOD238 Orbit analysis, limited use

Condmaster®Nova - 12 800 lines, 40 kHz

When higher resolution and frequency range are required, this module can be added to the system, e.g. for monitoring high speed gear boxes in turbines. The lower frequency limit is then 0.5, 2, 10 or 100 Hz. The upper limit is 40 000 Hz. The number of spectrum lines are extended to max. 12 800.

Ordering number

MOD139 12800 lines, 40 kHz, unlimited use

Condmaster[®]Nova - Intellinova[®]

The Intellinova module in Condmaster®Nova enables the software to communicate with all Commander Units, equipped with a user selected combination of measuring units for bearing and/or vibration monitoring. Units for analog in/out are also available.

The core of the Intellinova system is Condmaster®Nova, which receives the measuring results from all SPM condition monitoring devices for evaluation and presentation.

The Intellinova module offers advanced measurement, filtering and alarm options. These are used to set the system up to measure only when required, to discard what is insignificant and to raise only well justified alarms.

Based on extensive empirical data, international standards and machine statistics, the evaluation result is an easy to understand colour code, highlighting potential trouble spots. By calibrating and adjusting limit values, you can tune the automatic evaluation process with great precision and get an immediate, reliable diagnosis.

Ordering number

MOD187 Condmaster®Nova Intellinova

Condmaster[®]Nova - Online, CMS

The Condmaster[®]Nova Online module enables the software to communicate with all measuring units within the online condition monitoring system CMS:

- BMS units for bearing monitoring
- AMS boards to monitor voltage or current lines carrying analog signals
- VMS units for vibration severity monitoring
- VCM for vibration analysis with spectrum (EVAM) and BMC for SPM Spectrum

The core of the CMS system is Condmaster®Nova, which receives the measuring results from all SPM condition monitoring devices for evaluation and presentation.

Based on extensive empirical data, international standards and machine statistics, the evaluation result is an easy to understand colour code, highlighting potential trouble spots. By calibrating and adjusting limit values, you can tune the automatic evaluation process with great precision and get an immediate, reliable diagnosis.

Ordering number

MOD182 Condmaster®Nova Online, CMS

Condmaster[®]Nova - WEB and e-mail alarms

CondmasterWEB and **e-mail alarms** (MOD183) is an optional module in SPM's comprehensive maintenance program Condmaster®Nova.

With **CondmasterWEB**, users can reach their Condmaster program as a 'read only' version from any PC running Microsoft Internet Explorer 6 or higher. Thus, one can easily give access to Condmaster data by simply sending the name of the server on which CondmasterWEB is running to the party concerned.

CondmasterWEB will open in the Graphical Overview. By clicking on folders and icons, the user can quickly and easily get condition information in real time. Measuring results, alarm lists, graphics and spectra with zoom abilities are displayed in the same way as in the corresponding window of the 'real' Condmaster. Measuring point setups can be seen but not edited.

CondmasterWEB installs as a service on the server computer, which can be any PC with Windows NT or higher. A Web address is needed.

CondmasterWEB can be accessed from any PC via LAN or via Internet, normally through port 5790 (default).

Here are examples of addressing **CondmasterWEB** after logging on to the web with Microsoft Explorer.

A. CondmasterWEB is running on an external computer (= server) anywhere in the world or in the local network: http://(servername):5790/ B. CondmasterWEB is running on your own computer: http://localhost:5790/

E-mail Alarm sends selected alarms on selected components/measuring points via e-mail to stated addresses, according to a user defined weekly schedule. The e-mails can be rerouted to cellphones with SMS capability via messaging services.

As a general setup, the name of the company's mail server is input under 'Settings'. Each alarm mail assignment has a name and one or more recipients (e-mail addresses).

Measuring points and alarm types are selected from lists. In a week calendar, the user marks from – to periods. Alarms occurring during the marked periods will be sent by e-mail to all stated addresses. Users can also mark vacation periods on a year calendar, during which the mail service is suspended.

Alarm via cellphone requires the services of a company that redirects e-mail to cellphones. The user must make his own arrangement with the company providing the service.

Option modules and installation instructions are included on the Condmaster®Nova disc.

Ordering number

MOD183 CondmasterWEB and e-mail alarms

Condmaster[®]Nova - SAP link

SAP link (MOD184) is an optional module in Condmaster[®] Nova.

The module provides a direct link to SAP software. Pressing the SAP button on the Condmaster alarm list sends the marked alarm message to the SAP software. Returned is a SAP work order number that locks the alarm, until a second message from SAP deletes the alarm and sets a comment on the Condmaster measuring point, stating what has been done. In addition, the Condmaster measuring point setup now contains an optional field for SAP equipment numbers.

The operation requires no extra data input. The Condmaster operator simply presses the SAP button when he decides that an alarm merits an SAP work order. The SAP operator responds by sending a Standard Comment to a text file.

Standard Comments are a user defined register of short messages in Condmaster, e. g. 'Bearing replaced'. The SAP operator can add free text. On receiving the comment, Condmaster deletes the alarm. The comment is added to the list of comments under the measuring point and is visible in the measuring result diagram. Specific functions are required in the SAP software for the communication to work properly. These functions are not provided by SPM Instrument AB, only a protocol description of the functions as seen from Condmaster.

Z_Condmaster is the function that has to be implemented in SAP software. Condmaster calls Z-Condmaster in SAP and sends the measuring point and alarm information. SAP creates a work order and a file where Condmaster reads the SAP work order number. This file can be saved anywhere locally or on the server. It is normally placed in the Condmaster directory. The path has to be set in Condmaster.

There is no extra data input required on the SAP side. Condmaster measuring point numbers and Standard Comment codes are available to SAP software via a command to the SQL server that controls the Condmaster data base.

Option modules and installation instructions are included on the Condmaster®Nova disc.

Ordering number MOD184 SAP link

Condmaster[®]Nova - AMOS link

The AMOS link (MOD185) is an optional module in Cond-master® Nova.

The module provides a link to AMOS software. Clicking the Alarm export button on the Condmaster alarm list sends the marked alarm message to the AMOS software. Returned is an AMOS work order number that locks the alarm, until a second message from AMOS deletes the alarm and sets a comment on the Condmaster measuring point, stating what has been done.

The operation requires no extra data input. The Condmaster operator simply presses the **Alarm export** button when he decides that an alarm merits an AMOS work order. The AMOS operator responds by sending a Standard Comment to a text file.

Standard Comments are a user defined register of short messages in Condmaster, e.g. "Bearing replaced". The AMOS operator can add free text. On receiving the comment, Condmaster deletes the alarm. The comment is added to the list of comments under the measuring point and is visible in the measuring result diagram. Specific functions are required in the AMOS software for the communication to work properly. These functions are not provided by SPM Instrument AB, only a protocol description of the functions as seen from Condmaster.

Running the AMOS link requires a CBM module in AMOS. A register of planned actions equivalent to that in Condmaster must be implemented, and component numbers need to be the same in both systems.

Option modules and installation instructions are included on the Condmaster®Nova disc.

Ordering number MOD185 AMOS link

Condmaster[®] Nova - Rule Based Evaluation, RBE

RBE, Rule Based Evaluation (MOD181) is an optional module in Condmaster[®] Nova. The purpose of RBE is to give the user guidance on what to do when certain alarm conditions are met. RBE is en excellent tool in Product Integrated Maintenance (PIM).

RBE items are made up of standard comments and user defined texts to set up alarm parameters for trigged measuring points. Photographs can be attached to illustrate.

Each RBE item consists of a standard comment, one or more trigged measuring points, one or more variables and a rule specifying under what conditions the alarm is to be triggered. Measuring points can be added and deleted as required. When the conditions of a specific alarm are met, the alarm is triggered, suggesting appropriate measures.

If for instance there are high readings on a pump housing the reason is most likely cavitation. If this condition arises, the RBE function could be set up to rectify the problem. Suggested actions might be to open valves, change speed or other relevant measures to correct the faulty condition.

Ordering number

MOD181 Rule Based Evaluation, RBE

Condmaster[®]Nova - Plant Performer[™]

Plant Performer[™] is a statistics module in Condmaster, enabling strategic analysis of the economical and technical impact of maintenance. Statistical assignments are user defined and may include database or machine condition statistics and technical Key Performance Indicators, presented in easily understood pie, bar chart or 3D diagrams.

The concept of machine types, to which measuring points are connected, is central in the statistical module. When corrective measures have been taken, the user enters information in a **Corrective maintenance** comment, which is then used to generate *economical statistics*. Calculation intervals can be specified, and the resulting two or three dimensional graph can be exported to Word or Excel, printed or copied to clipboard.

Machine types are also the base for *machine condition statistics*.

Technical *KPIs* (*Key Performance Indicators*) are set up on the measuring point level. KPIs are quantifiable metrics used to facilitate defining and measuring progress towards the goals of the maintenance organization. For instance, the overall vibration level for a department, or an entire plant, calculated on a regular time interval.

The contents of the database, such as the number of measuring points or rounds, can be viewed using the *database statistics* function.

Statistical examples include:

- Total Loss of Contribution
- Overall vibration level for a department / for all fans / for entire plant etc.
- Operating condition (green yellow red) for all electrical motors
- Number of fans in alarm condition
- Alarms per machine type

Ordering number MOD186 Plant Performer

Condmaster®Nova - Order tracking

Order tracking is an optional Condmaster function used with Leonova Infinity for vibration analysis on variable speed applications. It is an ideal technique for analysing vibration problems that are related to the rotational speed of various machine components.

The method uses multiples of running speed (orders), rather than absolute frequency (Hz) to determine the upper frequency range. A tachometer pulse from the machine is required to determine the sampling frequency.

The purpose of order tracking is to retain the line resolution (number of lines per order) even when rotational speed varies between measurements. The reference axis of the resulting spectrum is scaled in orders, i.e. multiples of the rotational frequency. When expressed in orders, two or more spectra from the same machine can be more easily compared because the rotational speed (1x) and its multiples (harmonics) will always appear in the same spectrum position (orders), even when rotational speed varies. The results can also be displayed in a waterfall diagram.

The primary advantage of order tracking is that the selected order range will always cover the symptoms of interest, regardless of running speed.

Ordering number

MOD188 Order tracking, unlimited use

Shock Pulse Transducers, Adapters and Tools

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com Technical data are subject to change without notice. ISO 9001 certified. © SPM Instrument AB. 71700 B

Standard Adapters

Adapters are solid bolts which are mounted in countersunk and threaded holes in the bearing housings. They form the connecting points for a transducer with quick connector, TRA-30 and equivalent.

Standard adapters are available in three lengths and various thread sizes, see part numbers below. The material is either stainless steel or zinc-plated steel.

Part numbers

The following types of adapters are available:

32000	Zinc-plated, M8, 24 mm
32100	Zinc-plated, M8, 78 mm
32200	Zinc-plated, M8, 113 mm
33000	Zinc-plated, UNC 5/16", 24 mm
33200	Zinc-plated, UNC 5/16", 113 mm
32010	Stainless steel, M8, 24 mm
32110	Stainless steel, M8, 78 mm
32210	Stainless steel, M8, 113 mm
33010	Stainless steel, UNC 5/16", 24 mm
CAP-02	Dust cap for adapters

Technical data

Material, stainless steel	SS 2346 (AISI 303)
Material, zinc-plated	12 μm Zn
Torque	15 Nm

Mounting tools

82053	Countersink with fixed pilot for M8
81027	Holder for countersink
81028	Countersink, angle 90°, ø 12 mm
81031	Pilot for M8
81032	Pilot for UNC 5/16"

To drill the mounting hole, use drill bits:

6.9 mm for M8 6.6 mm for UNC 5/16"

Torque the adapter with a torque wrench and a 17 mm socket (SPM 81086).

Adapter Cap

The adapter cap CAP-02, made of red santoprene, protects the contact surface of adapters from dirt, paint, and damage.

A clean and undamaged adapter surface is essential for the correct transmission of shock pulses from the bearing to the measuring instrument. CAP-02 fits all types of SPM adapters.

Technical data

Material: Temperature range: Weight: Santoprene (TPEV) -60 to 135 YC 2.5 g

Adapters with lock nut

Adapters with lock nut are solid bolts of stainless steel. They are intended to replace existing mounting bolts or screws for protective covers, etc., with a thickness up to 6 mm. Adapters with lock nut are mounted in countersunk and threaded holes in the bearing housings. They form connecting points for the transducer with quick connector, TRA-30 and equivalent.

Adapters with lock nut are available in thread sizes from M8 to M12, see ordering numbers below. The table contains adapter thread size (d), lock nut threads (dn), and the width (n) across the flats of the lock nut.

Ordering numbers

32511	d = M8	dn = 12	n = 19
34511	d = M10	dn = 14	n = 19
36511	d = M12	dn = 16	n = 22

Wounting hole min. 15 mm

Technical data

Material	Stainless steel, SS 2346 (AISI 303)
Adapter torque M8	15 Nm
Lock nut torque M8	12 Nm
Adapter torque M10	20 Nm
Lock nut torque M10	15 Nm
Adapter torque M12	30 Nm
Lock nut torque M12	20 Nm

Torque the adapter with a torque wrench and a 17 mm socket, then the lock nut with a 19 (22) mm long socket.

Mounting tools

82053	Countersink with fixed pilot for M8		
81027	Holder for countersink		
81028	Countersink, angle 90ï, ø 12 (M6-M10)		
81029	Countersink, angle 90ĩ, ø 15 (M12)		
81031	Pilot for M8		
81033	Pilot for M10		
81035	Pilot for M12		
81086	Socket, 17 mm		
To drill the mounting hole, use drill bits:			
6.9 mm	for M8		
8.6 mm	for M10		
10.3 mm	for M12		

Glue-on adapter

Glue-on adapters have the same measuring characteristics as threaded adapters and connect to the transducer TRA-30. They have a flat, circular base with a removable tubular pin for unloading and fixing, and are attached to the measuring point with a suitable adhesive.

A glue-on adapter can replace the corresponding tapered adapter:

- on thinwalled housings
- where drilling would affect equipment warranties (mount without the tubular pin).

Mounting

Select a measuring point in accordance with the SPM rules.

Use a 4.0 mm drill for the mounting hole and make it 4.5 mm deep. The contact surface has to be plane, clean and free from paint. It should be planed with a counterbore, min. diameter 16 mm.

The recommended adhesives are 3M DP810, Loctite 638 or 480, to be applied according to the manufacturer's instruction. Put adhesive into the mounting hole as well as onto the adapter's seat surface. To avoid damage to the adapters's contact surface, use a mallet of soft material to tap it down into the mounting hole and press its seat surface against the material of the bearing housing.

If necessary, the adapter can be mounted without the tubular pin. Press it firmly against the bearing housing until the adhesive has sufficiently hardened to hold the adapter's weight.

Wait until the adhesive has completely hardened before connecting a transducer.

Technical data

Material, stainless steel:	SS 2346 (AISI 303)
Material, zink-plated:	SS 1914, 15 mm Zn
Seat surface:	ø16 mm
Tubular pin:	Spring steel,
	for hole ø 4.0 mm
Weight:	22 g
Adhesive:	3M DP810, Loctite 638, Loctite 480 or similar

Ordering numbers

36000	Glue-on adapter, zink-plated
36010	Glue-on adapter, stainless steel

Mounting tools

TOM-11	Counterbore, 16 mm
81274	Holder for counterbore
14602	Pilot, 4 mm

Standard Shock Pulse Transducers

Standard shock pulse transducers are used in all permanent SPM installations for bearing monitoring. They are installed in countersunk mounting holes on the bearing housings.

A shock pulse transducer converts the shock pulses emitted by the bearing into electric signals. A coaxial cable connects the transducer with a measuring terminal or measuring device. Max. cable length is 4 m.

Transducer housing and base are made of stainless acid proof steel, suitable for aggressive environments. Standard thread size is M8, with UNC 5/16" as an alternative. Standard length (A) is 61.5 mm. A long transducer (B), length 115.5 mm, is used to reach bearing housings beneath protective covers.

The transducer is normally connected with a TNC plug, SPM 93022. A TNC angle plug, SPM 93077, can be used in narrow spaces. To prevent cable corrosion in moist environments, the coaxial cable must be con-nected with a sealing TNC plug, SPM 13008.

Ordering numbers

40000	Standard shock pulse transducer, M8
40100	Standard shock pulse transducer,
	UNC 5/16"
40001	Standard shock pulse transducer,
	M8, extended
40101	Standard shock pulse transducer,
	UNC 5/16", extended

Technical data

Measuring range	Max. 100 dBsv
Housing, base	Stainless acid proof steel,
	Sandvik Grade:1802, EN:1.4523
Design	Sealed
Connector tightness	IP65 with TNC connector
	IP67 with conn. SPM13008
Temperature range	-30YC to +150YC
External overpressure	Max. 1 MPa (10 bar)
Torque	15 Nm, max. 20 Nm
Connector	TNC iack

Mounting tools

82053	Countersink with fixed pilot for M8
-------	-------------------------------------

- 81027 Holder for countersink
- 81028 Countersink, angle 901, 12 mm dia.
- 81031 Pilot for M8
- 81032 Pilot for UNC 5/16"

To drill the mounting hole, use drill bits 6.9 mm for M8, 6.6 mm for UNC5/16".

Torque and unscrew the transducer with a torque wrench and a long 17 mm socket (SPM 81086).

®

Shock Pulse Transducer with TMU

The shock pulse transducer with TMU is used in permanent SPM installations for bearing monitoring, in cases where the cable length between transducer and measuring unit exceeds 4 m. This allows a cable length of max. 100 m. The transducer with TMU is installed in a countersunk mounting hole on the bearing housing, in the same way as a standard transducer.

A shock pulse transducer with TMU (TMU = Transducer Matching Unit) converts the shock pulses emitted by the bearing into an electric signal, and stabilizes the signal for transmission via a long cable. A coaxial cable connects the transducer with a measuring terminal or measuring device.

Transducer housing and base are made of stainless, acid proof steel, suitable for aggressive environments. Thread size is M8, with UNC 5/16" as an alternative.

The transducer is normally connected with a TNC plug, SPM 93022. In moist environments, the coaxial cable must be connected with a sealing TNC plug, SPM 13008. A TNC angle plug, SPM 93077, can be used in narrow spaces.

Ordering numbers

42000	Shock pulse transducer with TMU, M8
42100	Shock pulse transducer with TMU, UNC 5/16"

Technical data

Measuring range	Max. 100 dBsv
Housing, base	Stainless acid proof steel,
	Sandvik Grade:1802, EN:1.4523
Design	Sealed
Connector tightness	IP65 with TNC connector
	IP67 with conn. SPM13008
Temperature range	–30YC to +100YC
External overpressure	Max. 0.7 MPa (7 bar)
Torque	15 Nm, max. 20 Nm
Connector	TNC jack

Mounting tools

82053	Countersink	with fixed	pilot for M8
-------	-------------	------------	--------------

- 81027 Holder for countersink
- 81028 Countersink, angle 901, 12 mm dia.
- 81031 Pilot for M8
- 81032 Pilot for UNC 5/16"

To drill the mounting hole, use drill bits 6.9 mm for M8, 6.6 mm for UNC 5/16".

Torque and unscrew the transducer with a torque wrench and a long 17 mm socket (SPM 81086).

®

Isolation Foot for Shock Pulse Transducers

The isolation foot is intended for SPM Shock Pulse Transducers and should be used to provide electric isolation. The reason is that differences in earth potential between transducer and measuring equipment can cause measuring faults. The isolation foot is installed in a countersunk mounting hole, in the same way as a standard transducer. SPM 15862 has M8 thread and SPM 15906 has UNC 5/16". The isolation exceed 1 Mohm at 500 V.

Glue-on Shock Pulse Transducer SPM 40010

Glue-on transducers 40010 can replace standard transducers on thinwalled bearing housings and on machines where the drilling of standard mounting holes would affect equipment warranties. They have the same measuring characteristics as standard transducers, but a flat, circular base which is glued to the measuring point, and an M3 screw for unloading and fixing.

Mounting

The transducer is mounted against a smooth, flat surface on the machine. Use a 2.7 mm drill for the mounting hole and make it 4.5 mm deep. Always plane the surface with a counterbore, min. diameter 15 mm.

The recommended adhesives are 3M DP810, Loctite 638 or Loctite 480. Please read the instructions for use and follow them carefully. Screw the transducer by hand into the mounting hole. The screw is self-threading. In narrow spaces a 17 mm socket (SPM 81086) may be used. The torque should not be more than 1 Nm. Wait until the adhesive has hardened before connecting the cable.

Technical data

Measuring range:	Max. 100 dBsv
Housing, base:	Stainless acid
	Sandvik Grade
Design:	Sealed
Connector tightness:	IP65 with TNC
	IP 67 with conr
. .	200 0 4 5 0

Temperature range: External overpressure: Recommended adhesive: Connector: Weight:

Stainless acid proof steel, Sandvik Grade:1802, EN:1.4523 Sealed IP65 with TNC connector IP 67 with conn. SPM13008 -30° C to +150° C Max. 1 MPa (10 bar) 3M DP810, Loctite 638 or 480 TNC 50 g

Tools

14042	Counterbore, complete
81274	Holder for counterbore
81275	Counterbore, diameter 15 mm
14041	Pilot, diameter 2.7 mm
81086	Socket, 17 mm

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com Technical data are subject to change without notice. ISO 9001 certified. @ Copyright SPM 2009-02. TD-98 B

Shock Pulse Transducers in Bolt Design

A shock pulse transducer in bolt design is intended to replace one of the holding bolts of the bearing housing. It can be used in case there is an uninterrupted signal path between the bearing and the transducer's seat surface (A). This means that the the seat surface (A) of the transducer is placed directly on the bearing housing. Shock pulses from the bearing are transmitted via that surface, not via the threads.

The transducer is mounted against a flat surface, milled and unpainted, within the load zone of the bearing. Washers must not be used. The transducer is pierced for a locking wire, hole diameter 1.5 mm.

Via a coaxial cable with TNC connector, the transducer is connected to a bearing damage detector or a measuring terminal for a portable shock pulse meter. In moist environments, a sealing TNC connector SPM 13008 must be used. An angle connector SPM 93077 is used in narrow spaces (min. space requirement 85 mm). Max. cable length is 4 m. The transducer is torqued with a torque wrench and a long 17 mm socket (SPM 81086).

Part numbers

41225 Transducer in bolt design, M10 41435 Transducer in bolt design, M12

Technical data

Measuring range Housing, base

Design

Stainless acid proof steel, Sealed **Connector tightness**

Max. 100 dBsv

Temperature range External overpressure Hole for locking wire Connector Torque:

Sandvik Grade:1802, EN:1.4523 IP65 with TNC connector IP67 with conn. SPM13008 -30°C to +150°C Max. 1 MPa (10 bar) 1.5 mm dia. TNC jack Max. 20 Nm for M10, 30 Nm for M12

Mounting tools

81027	Holder for counterbore
81057	Counterbore, diameter 20 mm
81033	Pilot 8.5 mm (M10)
81035	Pilot 10.2 mm (M12)

Special Bolts for Shock Pulse Transducers

Special bolts for shock pulse transducers are used in permanent SPM installations for bearing monitoring. The typical application is turbo chargers, where they function as holding bolts for bearing caps and receivers for standard shock pulse transducers with M8 threads (SPM 40000).

The bolts are made of high-tensile steel and must be mounted without washers. Each bolt is delivered with an M3 locking screw and an Allen key for this screw. The locking screw is secured in its hole. Bolts must not be re-used after unscrewing

Technical data

Material:

High-tensile steel, SS-EN 2244-05, EN 10083-3:2006, 42CrMo4

Locking screw:

SK6SS, M3 x 6

Turbo type	Bolt Art. no.	Thread size	Torque max.	Cable length (L)	Cable Art. no.
VTR 454	14073	M12	100 Nm	450 mm	46024-0.45
VTR 501	14073	M12	100 Nm	550 mm	46024-0.55
VTR 564	14074	M16	230 Nm	550 mm	46024-0.55
VTR714	14075	M20	350 Nm	650 mm	46024-0.65

Shock Pulse Transducer with Probe TRA-22

TRA-22 is a hand-held probe, which is used together with Shock Pulse Tester T30 (T2000/T2001) and Shock Pulse Analyzer A30 (A2010/A2011). The probe is directionally sensitive and must be held aligned against the bearing and not deviate from this direction by more than \pm 51°. The probe tip is Aspring loaded and moves within a sleeve made of chloroprene rubber (neoprene) and tolerates 1101°C (2301°F).

Measuring points for the probe transducer should be located directly on the bearing housing and the signal path should be in a direct line to the contact area. The strongest shock pulses are emitted from the loaded region of the rolling interface in the bearing. The loaded region for radial load covers a sector of ± 45 ° from the load direction, for axial load the region is 360°. Since the transfer of shock pulses to the bearing housing is limited by the width of the bearing, direct radiation of pulses will be restricted to a sector of ± 60 ° from the perpendicular to the rolling surface. Measuring points should be clearly marked, for instance with the SPM marker BEX-19.

To maintain a steady pressure on the tip, press the probe tip against the measuring point until the rubber sleeve is in contact with the surface. Avoid pressing the probe tip against cavaties and fillets which are smaller than the probe tip.

Ordering numbers

- TRA-22 Shock pulse transducer, probe assembly
- BEX-19 Measuring point marker
- BEX-20 Center drill
- BEX-21 Rotary file

Spare parts

- TRA-15Transducer with probeBAX-10Probe handleCAB-06Cable for TRA-22
- 13108 Sleeve for probe tip

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com Technical data are subject to change without notice. ISO 9001 certified. © Copyright SPM 2001-10. TD-039 B

Shock Pulse Transducer with Probe TRA-72

TRA-72 is a hand-held probe, which is used together with Leonova. The probe is directionally sensitive and must be held aligned against the bearing and not deviate from this direction by more than ± 5 ?. The probe tip is spring loaded and moves within a sleeve made of chloroprene rubber (neoprene) and tolerates 110°C (230°F).

Measuring points for the probe transducer should be located directly on the bearing housing and the signal path should be in a direct line to the contact area. The strongest shock pulses are emitted from the loaded region of the rolling interface in the bearing. The loaded region for radial load covers a sector of ± 45 ° from the load direction, for axial load the region is 360°. Since the transfer of shock pulses to the bearing housing is limited by the width of the bearing, direct radiation of pulses will be restricted to a sector of ± 60 ° from the perpendicular to the rolling surface. Measuring points should be clearly marked, for instance with the SPM marker BEX-19.

To maintain a steady pressure on the tip, press the probe tip against the measuring point until the rubber sleeve is in contact with the surface. Avoid pressing the probe tip against cavaties and fillets which are smaller than the probe tip.

Ordering numbers

- TRA-72 Shock pulse transducer, probe assembly
- BEX-19 Measuring point marker
- BEX-20 Center drill
- BEX-21 Rotary file

Spare parts

TRA-15 Transducer with probeBAX-10 Probe handleCAB-37 Cable for TRA-72, 1.5 m (5 ft)13108 Sleeve for probe tip

Shock Pulse Transducer with Probe TRA-73

TRA-73 is a hand-held probe, which is used together with Bearing Checker. The probe is directionally sensitive and must be held aligned against the bearing and not deviate from this direction by more than $\pm 5^{\circ}$. The probe tip is spring loaded and moves within a sleeve made of chloroprene rubber (neoprene) and tolerates 110° C (230° F).

Measuring points for the probe transducer should be located directly on the bearing housing and the signal path should be in a direct line to the contact area. The strongest shock pulses are emitted from the loaded region of the rolling interface in the bearing. The loaded region for radial load covers a sector of $\pm 45^{\circ}$ from the load direction, for axial load the region is 360° . Since the transfer of shock pulses to the bearing housing is limited by the width of the bearing, direct radiation of pulses will be restricted to a sector of $\pm 60^{\circ}$ from the perpendicular to the rolling surface. Measuring points should be clearly marked, for instance with the SPM marker BEX-19.

To maintain a steady pressure on the tip, press the probe tip against the measuring point until the rubber sleeve is in contact with the surface. Avoid pressing the probe tip against cavaties and fillets which are smaller than the probe tip.

Technical data

Coaxial cable	PVC, length 1.5 m (5 ft)		
Connector	Lemo		
Dimensions	260 x 25 mm (10.2 x 1 in)		
Weight	275 g (9.7 oz)		

Ordering numbers

TRA-73	Shock pulse transducer, probe assembly
BEX-19	Measuring point marker
BEX-20	Center drill
BEX-21	Rotary file

Spare parts

TRA-15	Transducer with probe
BAX-10	Probe handle
CAB-73	Cable for TRA-73, LEMO connector, 1.5 m (5 ft)
13108	Sleeve for probe tip

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

Technical data are subject to change without notice. ISO 9001 certified. ©Copyright SPM 2006-02. TD-250.B

Shock pulse transducer with quick connector TRA-30

TRA-30 is a shock pulse transducer with quick connector. It is used for measurements on permanently installed adapters. The quick connector forms a bayonet connection together with the adapter.

To attach the TRA-30 to an adapter, push the transducer firmly onto the adapter and twist it clockwise.

Twist counter clockwise to unfasten the transducer.

Technical data

Measuring range	Max. 100 dBsv
Design	Sealed
Temperature range	-30Yto +70YC
Material, spanner	Blacknited steel
Handle cover	Urethan
Coaxial cable	PVC, length 1.5 m
Connector	TNC
Weight	250 g

Part numbers

TRA-30Transducer with quick connector, incl. cableCAB-30Cable for TRA-30

Shock pulse transducer with quick connector TRA-70

TRA-70 is a shock pulse transducer with quick connector for measurements on permanently installed adapters. The transducer can be used together with the handheld instrument Leonova. The quick connector forms a bayonet connection together with the permanently installed adapter.

To attach the TRA-70 to an adapter, push the transducer firmly onto the adapter and twist it clockwise.

Twist counter clockwise to unfasten the transducer.

Technical data

Measuring range Design Temperature range Material, spanner Handle cover Coaxial cable Connector Weight Max. 100 dBsv Sealed -30°to +70°C Blacknited steel Urethan PVC, length 1.5 m BNC 250 g

Shock pulse transducer with quick connector TRA-74

TRA-74 is a shock pulse transducer with quick connector for measurements on permanently installed adapters. The transducer can be used together with the handheld instrument Bearing Checker. The quick connector forms a bayonet connection together with the permanently installed adapter.

To attach the TRA-74 to an adapter, push the transducer firmly onto the adapter and twist it clockwise.

Twist counter clockwise to unfasten the transducer.

Technical data

Measuring range Design Temperature range Material, spanner Handle cover Coaxial cable Connector Dimensions Weight Max. 100 dBsv Sealed -30° to +70° C (-22° to +158° F) Blacknited steel Urethan PVC, length 1.5 m (5 ft) Lemo 90 x 30 mm (1.2 x 3.5 in) 203 g (7.2 oz)

Transducer with quick connector TRA-75

TRA-75 is a shock pulse transducer with quick connector for Bearing Checker, specially designed for narrow spaces.

On TRA-75, the cable is fitted with an angle connector, making this transducer about 30 mm shorter than the standard model TRA-74. In all other respects, the two models are identical.

To attach the TRA-75 to an adapter, push the transducer firmly onto the adapter and twist it clockwise.

Twist counter clockwise to unfasten the transducer.

Technical data

Measuring range Design Temperature range

Material, spanner Material, handle Coaxial cable Connector Length Weight Max. 100 dBsv Sealed -30° to +70° C (-22° to +158° F) Blacknited steel Stainless steel PVC, length 1.5 m (4.9 ft) LEMO 70 mm (2.8 in) 200 g (7 oz)

Transducer with quick connector TRA-31

TRA-31 is a shock pulse transducer with quick connector, specially designed for narrow spaces.

On TRA-31, the cable is fitted with an angle connector, making this transducer about 30 mm shorter than the standard model TRA-30. In all other respects, the two models are identical.

To attach the TRA-31 to an adapter, push the transducer firmly onto the adapter and twist it clockwise.

Twist counter clockwise to unfasten the transducer.

Technical data

- Measuring range Design Temperature range Material, spanner Material, handle Coaxial cable Connectors Length Weight
- Max. 100 dBsv Sealed -30° to +70° C Blacknited steel Stainless steel PVC, length 1.5 m TNC 70 mm 220 g

Part numbers

TRA-31Transducer with quick connector incl. cable46012-1.5Cable for TRA-31

Transducer with quick connector and TMU

TRA-32 is a shock pulse transducer with quick connector, specially designed for applications where the measuring cable is longer than 4 m.

TRA-32 has a built-in transducer matching unit (TMU) which allows a cable length of up to 100 m between the transducer and the shock pulse meter. TRA-32 fits all SPM adapters.

If transducer and measuring cable are used in moist environments, it is necessary to equip the cable with a sealing TNC cable plug SPM 13008.

To attach the TRA-32 to an adapter, push the transducer firmly onto the adapter and twist it clockwise.

Twist counter clockwise to unfasten the transducer.

Technical data

Measuring range
Design
Temperature range
Material, spanner
Material, handle
Connector
Max. cable length

Max. 100 dBsv Sealed -30° to +100° C Blacknited steel Stainless steel TNC 100 m

Tachometer Probe TAD-18

The Tachometer Probe TAD-18 is used together with SPM's hand-held instruments for optical measurement of the rate of rotation and for contact measurement of as well the rate of rotation as the peripheral speed.

Optical measurement of the rate of rotation

A light beam is directed against a reflecting tape on the rotating object, from a distance of max. 0.6 m and from an angle of max. 45°C.

Contact measurement of rpm

The contact adapter TAD-10 with a rubber tipped contact center, TAD-11/15, is screwed onto the tachometer probe and then held against the center of a shaft end or a wheel.

Contact measurement of peripheral speed

The contact adapter TAD-10 with contact wheel is held against the circumference of a shaft, a belt, etc. The speed is read out in units, depending on which contact wheel is used:

Meters per minute – use TAD-12, divide result by 10 Yards per minute – use TAD-13, divide result by 10 Feet per minute – use TAD-17, divide result by 2.

Ordering numbers

- TAD-18 Tachometer probe with cable
- CAB-10 Spiral cable
- TAD-10 Contact adapter
- TAD-11 Contact center, rpm, short
- TAD-15 Contact center, rpm, long
- TAD-12 Contact wheel, meter/min.
- TAD-13 Contact wheel, yards/min.
- TAD-17 Contact wheel, feet/min.
- TAD-14 Reflecting tape, pad of 5 sheets
- TAD-16 Reflecting tape for thin shafts, 5 sheets

Technical specifications

Measuring range: Measuring distance: Dimensions, TAD-18: max. 20 000 rpm optical max. 0.6 m (2 ft.) 171 x 42 mm

Temperature probe TEM-11

The temperature probe TEM-11 is used together with SPM's hand-held instruments, for temperature measurements in the range of -50 to +440 YC.

The probe TEM-11 is connected via the spiral cable CAB-10 to the EXT connector of the instrument. The TEMP menu appears automatically on the instrument when the temperature probe is connected. It is power supplied by the instrument.

Two probe tips belong to TEM-11:

- TEN-10 for measuring the surface temperature of solids
- TEN-11 for measuring the temperatures of liquids.

The probe tips fit into the socket at the front end of the probe. Probe and tips should be handled and stored with care. Keep the protective cap on the TEN-10 when the tip is not being used.

Ordering numbers

- TEM-11 Temperature probe with cable
- CAB-10 Spiral cable
- TEN-10 Probe tip for solids
- TEN-11 Probe tip for liquids.

Technical specifications

Measuring range:		–50 to +440 YC
		(–58 to +824 \F)
Maximu	m offset:	±5 YC (±9 YF)
Measuri	ng uncertainty	± 1㎡C
Sensitivi	ty	10 mV / YC
Output	range	0 to 5 V DC
Power s	upply	+5 V DC
Measuri	ng time:	approx. 1 minute
Dimensi	ons,	
	TEM-11:	118 x ø 42 mm
	TEN-10:	length 122 mm with cap
	TEN-11:	length 159 mm
Weight	TEM-11:	94 g

Countersinking tools for adapters and transducers

Combination tools

The listed tools are used for correct countersinking of mounting holes for adapters and standard shock pulse transducers. The combination tool consists of a holder, a replaceable countersink and replaceable pilots. Ordering numbers are shown beside.

b (m	ım) p	c	dc (mm)	d
			40	
5.5	81030	81028	ø12	M6 / UNF 1/4"
6.9	81031	81028	ø12	M8
6.6	81032	81028	ø12	UNC 5/16"
8.6	81033	81028	ø12	M10
8.1	81034	81028	ø12	UNC 3/8"
10.3	81035	81029	ø15	M12
10.9	81036	81029	ø15	UNC 1/2"

81057 Counterbore

The counterbore is used for flat face milling of mounting holes for shock pulse transducers in bolt design and vibration transducers. The counterbore is mounted in holder 81027 together with a pilot according to the table beside.

82053 Countersink with fixed pilot

The countersink is intended for mounting hole M8.

Counterbore for Glue-on Transducer 40010

- 14042 Counterbore, complete
- 81274 Holder for counterbore
- 81275 Counterbore, diameter 15 mm
- 14041 Pilot, diameter 2.7 mm

Tools for measuring point preparation

BEX-20 center drill and BEX-21 ball shaped rotary file are used to prepare measuring points for the probe transducer, and to faciliate drilling of mounting holes for adapters, studs, and transducers at an angle.

SPM

Technical data are subject to change without notice. ISO 9001 certified. © Copyright SPM 2003-06. TD-21.B

Vibration Transducers and Transmitters

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

SOLID Transducers and Transmitters - Overview

All SOLID transducers and transmitters are internally isolated. The vibration transducers have a temperature range of -40 to +120 °C (-40 to +248 °F), whereas the 4-20 mA transmitters operate in -40 to +85 °C (-40 to +185 °F).

Article no.	Ex	Thread	Connector	Frequency range	Sensitivity	Compatible with	TD sheet
SLD 121 A	-	M8	SMB	2–1000 Hz	1.2 mV/m/s ²	CMM, MG4, Intellinova	TD-283
SLD 121 B	-	M8	2-pin	2–1000 Hz	1.2 mV/m/s ²	CMM, MG4, Intellinova	TD-283
SLD 121 E	-	UNF 1/4"	SMB	2–1000 Hz	1.2 mV/m/s ²	CMM, MG4, Intellinova	TD-283
SLD 121 F	-	UNF 1/4"	2-pin	2–1000 Hz	1.2 mV/m/s ²	CMM, MG4, Intellinova	TD-283
SLD 122A	-	M8	SMB	2–5000 Hz	4 mV/m/s ²	MG4, Intellinova	TD-283
SLD 122B	-	M8	2-pin	2–5000 Hz	4 mV/m/s ²	MG4, Intellinova	TD-283
SLD 122E	-	UNF 1/4"	SMB	2–5000 Hz	4 mV/m/s ²	MG4, Intellinova	TD-283
SLD 122 F	_	UNF 1/4"	2-pin	2–5000 Hz	4 mV/m/s ²	MG4, Intellinova	TD-283
SLD 144B	-	M8	2-pin	2–10 000 Hz	10 mV/m/s ²	LEO, VCM, Intellinova	TD-283
SLD 144 F	_	UNF 1/4"	2-pin	2–10 000 Hz	10 mV/m/s ²	LEO, VCM, Intellinova	TD-283
SLD 243 B	Ex	M8	2-pin	2–10 000 Hz	5 mV/m/s ²	LEO, VCM, Intellinova	TD-284
SLD 243F	Ex	UNF 1/4"	2-pin	2–10 000 Hz	5 mV/m/s ²	LEO, VCM, Intellinova	TD-284
SLD 244 B	Ex	M8	2-pin	2–10 000 Hz	10 mV/m/s ²	LEO, VCM, Intellinova	TD-284
SLD 244 F	Ex	UNF 1/4"	2-pin	2–10 000 Hz	10 mV/m/s ²	LEO, VCM, Intellinova	TD-284

Vibration Transducers

Vibration Transducers with Side Entry

Article no.	Thread	Connector	Frequency range	Sensitivity	Compatible with	TD sheet
SLD 144S	M8	2-pin	2–10 000 Hz	10 mV/m/s ²	LEO, VCM, Intellinova	TD-282
SLD 144 S-UNF	UNF 1/4"	2-pin	2–10 000 Hz	10 mV/m/s ²	LEO, VCM, Intellinova	TD-282

The frequency range is specified for the transducer when permanently installed. The measuring results will be affected at higher frequencies when using a magnetic foot.

Note: Ex approved transducers must be used together with transducer interface SPM 15226 or Ex approved zener barrier when used in explosive environment.

Article no.	Ex	Thread	Connector / Cable	Frequency range	Measuring range	TD sheet
SLD722 C	_	M8	Integrated cable, 3 m*	2 – 1000 Hz	0 – 12.5 mm/s	TD-285
SLD722 G	-	UNF 1/4"	Integrated cable, 3 m*	2 – 1000 Hz	0 – 0.5 in/s	TD-285
SLD 723 C	_	M8	Integrated cable, 3 m*	2 – 1000 Hz	0 – 25 mm/s	TD-285
SLD 723 - M10	-	M10	Integrated cable, 3 m*	2 – 1000 Hz	0 – 25 mm/s	TD-285
SLD 723 G	_	UNF 1/4"	Integrated cable, 3 m*	2 – 1000 Hz	0 – 1 in/s	TD-285
SLD 724 C	_	M8	Integrated cable, 3 m*	2 – 1000 Hz	0 – 50 mm/s	TD-285
SLD 724 G	_	UNF 1/4"	Integrated cable, 3 m*	2 – 1000 Hz	0 – 2 in/s	TD-285
SLD 733 C	_	M8	Integrated cable, 3 m*	10 – 1000 Hz	0 – 25 mm/s	TD-285
SLD 733 G	_	UNF 1/4"	Integrated cable, 3 m*	10 – 1000 Hz	0 – 1 in/s	TD-285
SLD 823 C	Ex	M8	Integrated cable, 3 m*	2 – 1000 Hz	0 – 25 mm/s	TD-286
SLD 823 G	Ex	UNF 1/4"	Integrated cable, 3 m*	2 – 1000 Hz	0 – 1 in/s	TD-286
SLD 833 C	Ex	M8	Integrated cable, 3 m*	10 – 1000 Hz	0 – 25 mm/s	TD-286
SLD 833 G	Ex	UNF 1/4"	Integrated cable, 3 m*	10 – 1000 Hz	0 – 1 in/s	TD-286

4-20 mA Vibration Transmitters

* Standard cable length is 3 meters, but optional lengths may be ordered (ex. SLDXXXX-L, L = length in meters, max. 30 m). Note: Ex approved transmitters must be connected through a barrier when used in explosive environment.

Vibration Transducers with Side Entry

The vibration transducers series SLD144S are piezo-electric accelerometers of compression type with side entry and built-in electronics, designed for vibration monitoring of industrial machinery. The electrical signal is isolated from the transducer housing.

The transducer is mounted against a smooth, flat surface min. 35 mm in diameter (min. 16 mm is required when using mounting base SPM 15757 or 15802). The transducer has a captured bolt for mounting and is connected via a twisted pair cable with 2 pin connector. In moist environment, use the sealed connector with integrated measuring cable SPM 46105-L/46106-L together with cable protection tube SPM 81385.

Technical data

Nominal sensitivity, main axis:	10 mV/m/s ² * =100 mV/g
Transverse sensitivity:	max. 10%
Typical base strain sensitivity:	0.01 m/s²/µ strain
Linear frequency range:	2 Hz to 10 kHz (±3 dB)
Max. peak acceleration:	$600 \text{ m/s}^2 = 60 \text{ g}$
Settling time:	3 sec
Bias point:	11 to 14 V (typical 12 V)
Temperature range:	-40° to $+125^\circ$ C (–40° to 260° F)
Power requirements:	24 V /2 to 5 mA
Casing:	Stainless acid proof steel
Sealing:	IP67 together with appropriate connector
Isolation:	Case isolated, > 1 Mohm
Torque limit:	10 Nm (7.4 lbf ft)
Weight:	200 grams (7 oz)
Connector type:	Compatible with 2 pin MIL- C-5015 style

* Individual value given on the calibration chart.

Article number	Name	Thread (t)
SLD 144 S	Vibration transducer	M8
SLD 144 S-UNF	Vibration transducer	UNF 1/4"

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

Vibration Transducers, Series SLD100

The vibration transducers series SLD100 are piezo-electric accelerometers of compression type with built-in electronics, designed for vibration monitoring of industrial machinery. The transducer is mounted against a smooth, flat surface on the machine. The electrical signal is isolated from the transducer housing.

Technical data

Transverse sensitivity:	max. 10%
Typical base strain sensitivity:	$0.01 \text{ m/s}^2/\mu \text{ strain}$
Max. peak acceleration:	600 m/s ² = 60 g
Settling time:	3 sec
Temperature range:	–40° C to +125° C (–40° F to 260° F)
Power requirements:	12 to 24 V, 2 to 5 mA
Casing:	Stainless acid proof steel
Sealing:	IP 67 together with appropriate connector
Isolation:	Case isolated, > 1 Mohm
Torque limit:	10 Nm (7.4 lbf ft)
Weight:	110 grams (4 oz)

Mounting tools

81027 Holder for counterbore
81057 Counterbore, diameter 20 mm
81030 Pilot for UNF 1/4"
81031 Pilot for M8

To drill the mounting hole, use drill bit 6.9 mm (M8) or 5.5 mm (UNF 1/4"). Torque the transducer with a 24 mm torque wrench.

Article number	Connector type	Thread (t)	Frequency range	Sensitivity (±1dB) *	Bias (typical)
SLD 121 A	SMB	M8	2 – 1000 Hz	1.2 mV/m/s ² = 12 mV/g	6 – 9 V (8 V)
SLD 121 B	2-pin	M8	2 – 1000 Hz	1.2 mV/m/s ² = 12 mV/g	6 – 9 V (8 V)
SLD 121 E	SMB	UNF 1/4 "	2 – 1000 Hz	1.2 mV/m/s ² = 12 mV/g	6 – 9 V (8 V)
SLD 121 F	2-pin	UNF 1/4 "	2 – 1000 Hz	$1.2 \text{ mV/m/s}^2 = 12 \text{ mV/g}$	6 – 9 V (8 V)
SLD122 A	SMB	M8	2 – 5000 Hz	$4 \text{ mV/m/s}^2 = 40 \text{ mV/g}$	6 – 9 V (8 V)
SLD122 B	2-pin	M8	2 – 5000 Hz	$4 \text{ mV/m/s}^2 = 40 \text{ mV/g}$	6 – 9 V (8 V)
SLD122 E	SMB	UNF 1/4 "	2 – 5000 Hz	$4 \text{ mV/m/s}^2 = 40 \text{ mV/g}$	6 – 9 V (8 V)
SLD122 F	2-pin	UNF 1/4 "	2 – 5000 Hz	$4 \text{ mV/m/s}^2 = 40 \text{ mV/g}$	6 – 9 V (8 V)
SLD144 B	2-pin	M8	2 – 10 000 Hz	$10 \text{ mV/m/s}^2 = 100 \text{ mV/g}$	11 – 13 V (12 V)
SLD144 F	2-pin	UNF 1/4 "	2 – 10 000 Hz	$10 \text{ mV/m/s}^2 = 100 \text{ mV/g}$	11 – 13 V (12 V)

* Individual value given on the calibration chart.

Technical data are subject to change without notice. ISO 9001 certified. © Copyright SPM 2008-09. TD-283 B

Vibration Transducer TRV-18 / 19

The transducers TRV-18 and TRV-19 are piezo-electric accelerometers of compression type with built-in preamplifier, designed for vibration monitoring of industrial machinery. They are used in permanent installations with the CMM System, Intellinova and MG-4. The cable length between transducer and measuring unit is max. 50m (165 ft).

The transducer is mounted against a smooth, flat surface on the machine. TRV-18 has thread size M8 and TRV-19 has UNF 1/4"-28. The transducers are delivered with three washers for adjusting the connector angle. Each washer turns the transducer 90°. The coaxial cable (SPM 90005-L or 90267-L) with TNC connector must be secured with a clamp close to the transducer.

In moist environments, use sealing TNC cable plugs SPM 13008 to prevent cable corrosion. For electric insulation, use insulation foot TRX-18 / TRX-19.

Technical data

Nominal sensitivity, main axis:	1.2 mV/m/s ² *
Transverse sensitivity:	max. 10%
Typical base strain sensitivity:	0.01 m/s ² / μ strain
Linear frequency range:	3 to 1000 Hz
Max. peak acceleration:	600 m/s ²
Temperature range:	-20° C to +125° C
	(-4° F to +260° F)
Typical temperature drift:	0.25%/°C
Housing, base:	Stainless acid proof steel,
	Sandvik Grade:1802,
	EN:1.4523
Design:	Sealed
Connector tightness:	IP65 with TNC connector
	IP67 with conn. SPM13008
Weight:	135 grams (5 oz)
Connector type:	TNC
Torque limit:	10 Nm (7.4 lbf/ft)
Power requirement:	12 to 24 V DC
Constant current:	2 to 5 mA
Settling time:	3 sec
Bias point:	5 to 11 V (typ 7 V)

* Individual value given on the calibration chart.

œ SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

To drill the mounting hole, use drill bit 6.9 mm for M8 and 5.5 mm for UNF 1/4"-28. Torque and unscrew the transducer with a torque wrench and a 17 mm socket (SPM 81086).

Mounting tools

81027	Holder for counterbore
81057	Counterbore, diameter 20 mm
81030	Pilot for UNF 1/4"-28 (TRV-19)
81031	Pilot for M8 (TRV-18)

Vibration Transducer TRV-20/21

The transducers TRV-20 and TRV-21 are piezo-electric accelerometers of compression type with built-in preamplifier, designed for vibration monitoring of industrial machinery. The transducers are used in permanent installations with Intellinova, the CMS System (measuring unit VCM) and with the hand-held instrument Leonova. The cable length between the transducer and the measuring unit is max. 50 m (165 ft).

The transducer is mounted against a smooth, flat surface on the machine. TRV-20 has thread size M8 and TRV-21 has UNF 1/4"-28. The transducers are delivered with three washers for adjusting the connector angle. Each washer turns the transducer 90°. The coaxial cable (SPM 90005-L or 90267-L) with TNC connector must be secured with a clamp close to the transducer.

In moist environments, use sealing TNC cable plugs SPM 13008 to prevent cable corrosion. For electric insulation, use insulated installation foot TRX-18/19.

Technical data

Nominal sensitivity, main axis:	4.0 mV/m/s ² *
Transverse sensitivity:	max. 10%
Typical base strain sensitivity:	0.01 m/s ² / μ strain
Linear frequency range:	2 to 5000 Hz
Max. peak acceleration:	600 m/s ²
Temperature range:	-20° C to +125° C
	(-4° F to +260° F)
Power requirements:	12–24 V, 2–5 mA
Casing:	Stainless acid proof steel,
	Sandvik Grade:1802,
	EN:1.4523
Design:	Sealed
Connector tightness	IP65 with TNC connector
	IP 67 with conn. SPM13008
Weight:	135 grams (5 oz)
Connector type:	TNC
Torque limit:	10 Nm (7.4 lbf · ft)
Bias point:	6 to 12 V (typ 8 V)

* Individual value given on the calibration chart.

Mounting tools

81027 Holder for counterbore
81057 Counterbore, diameter 20 mm
81030 Pilot for UNF 1/4" (TRV-21)
81031 Pilot for M8 (TRV-20)

To drill the mounting hole, use drill bit 6.9 mm for M8 and 5.5 mm for UNF 1/4". Torque and unscrew the transducer with a torque wrench and a 17 mm socket (SPM 81086).

Vibration Transducer TRV-22 / 23

The transducers TRV-22 and TRV-23 are piezo-electric accelerometers of compression type, designed for vibration monitoring of industrial machinery. They can be used together with handheld instruments or in permanent installations. Max. cable length between transducer and measuring unit is 10 m (33 ft).

The transducer is mounted in a threaded hole on a smooth, flat surface on the machine. It is delivered with three washers for adjusting the connector angle. Each washer turns the transducer 90°. Fix low noise coaxial cable (SPM 90176-L or 90292-L) with TNC connector with a clamp close to the transducer.

For installations in moist environments, use sealing TNC cable plugs SPM 13008 to prevent cable corrosion.

Technical data

Nominal sensitivity, main axis:	10 pC/m/s ² (7-12 pC/m/s ²) *
Transverse sensitivity:	max. 10%
Typical base strain sensitivity:	0.01 m/s²/∝ strain
Linear frequency range:	0 to 5000 Hz
Max. peak acceleration:	600 m/s ²
Temperature range:	–30YC to +150YC
	(–22)°F to +302)°F)
Typical temperature drift:	0.25% / YC
Housing, base:	Stainless acid proof steel,
	Sandvik Grade:1802,
	EN:1.4523
Design:	Sealed
Connector tightness:	IP65 with TNC connector
	IP67 with conn. SPM13008
Weight:	171 grams (6 oz)
Connector type:	TNC
Torque limit:	10 Nm (7.4 lbf/ ft)

* Individual value given on the calibration chart.

To drill the mounting hole, use drill bit 6.9 mm (M8) or 5.5 mm (UNF 1/4"-28). Torque and unscrew the transducer with a torque wrench and a 17 mm socket (SPM 81086).

Part Numbers

TRV-22	Vibration transducer, M8
TRV-23	Vibration transducer, UNF 1/4"-28
13008	Sealing TNC cable plug
81027	Holder for counterbore
81057	Counterbore, diam. 20 mm
81030	Pilot for UNF 1/4" (TRV-23)
81031	Pilot for M8 (TRV-22)

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 225 00 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

4-20 mA Vibration Transmitters

The 4-20 mA vibration transmitters are piezo-electric accelerometers of compression type and provide a 4-20 mA output signal proportional to the true RMS value of vibration velocity. The transmitters can be connected to common process control systems (PLC, DCS). The electrical signal is isolated from the transmitter housing. The transmitters operates by using power from a standard 4-20 mA loop.

The transmitter is mounted against a smooth, flat surface on the machine. Standard thread size is M8 or UNF 1/4"-28. The transmitter has an integral cable (shielded, twisted pair) for connection to the measuring device.

Technical data

Output signal:	4 to 20 mA
Turn on time, 4-20 mA loop:	< 60 seconds
Transverse sensitivity	< 10%
Power requirements:	12 to 24 V DC
Loop resistance at 24 VDC:	R∟ max. 600Ω
Casing material:	stainless acid proof steel
Operating temperature:	-40 to 85 °C $$ (–40 to 185 °F)
Sealing:	IP 67
Isolation:	case isolated, >1 Mohm
Integral cable:	PUR
Cable length:	max. 30 m (98 ft), standard 3 m (10 ft)
Torque limit:	10 Nm (7.4 lbf ft)
Weight:	115 grams (4 oz)

Mounting tools

81027 Holder for counterbore
81057 Counterbore, diameter 20 mm
81030 Pilot for UNF 1/4"
81031 Pilot for M8
81033 Pilot for M10

To drill the mounting hole, use drill bit 6.9 mm (M8), 8.6 mm (M10) or 5.5 mm (UNF 1/4"-28). Torque the transmitter with a 24 mm torque wrench.

Article number	Thread (t)	Measuring range	Frequency range
SLD722C	M8	0 - 12.5 mm/s	2-1000 Hz
SLD 722 G	UNF 1/4 "	0-0.5 in/s	2-1000 Hz
SLD723C	M8	0-25 mm/s	2-1000 Hz
SLD723C-M10	M10	0-25 mm/s	2-1000 Hz
SLD723G	UNF 1/4 "	0-1 in/s	2-1000 Hz
SLD724C	M8	0 - 50 mm/s	2-1000 Hz
SLD724G	UNF 1/4 "	0-2 in/s	2-1000 Hz
SLD733C	M8	0 - 25 mm/s	10-1000 Hz
SLD733G	UNF 1/4 "	0-1 in/s	10-1000 Hz

NB: Standard cable length is 3 meters, but optional lengths may be ordered (ex. SLDXXXX-L where L = length in meters, max.30 m).

4-20 mA Temperature Transmitter TMM-12/13

TMM-12 and TMM-13 are temperature transmitters with a measuring range from -16° to $+120^{\circ}$ C and an analog output of 4 to 20 mA. The transmitters are mounted in countersunk mounting holes. TMM-12 has thread size M8 and TMM-13 has thread size UNC 5/16". The transmitters are connected via twisted pair cable with 2 pin connector, compatible with 2 pin MIL-C-5015 style. They use a power supply of 12 to 24 V DC (see derating curve).

TMM-12/13 transmitters can be connected to the CMM System (DMM and VDM-14/15 measuring units), to Intellinova (Analog Monitoring Unit) or to CMS System (AMS unit) for continuous machine condition monitoring. They can also be connected to the analog inputs on a PLC or similar.

Electrical connection

Technical data

Measuring range:	–16° to 120 °C (3° to 248° F)
Output:	4 to 20 mA
Inaccuracy:	typical 1°C, max. 3°C at 25°C
Linearity deviation:	2% +0.5 °C
Long time stability:	0.4 °C
Temperature range:	–30° to 125° C (-22° to 257° F)
Power supply:	12 to 24 V DC, see derating curve
Loop resistance	50 (U-7) Ω for U=12 to 24 V DC
	e.g. 400 Ω at 15 V
Housing:	stainless acid proof steel,
	Sandvik Grade:1802, EN:1.4523,
	Viton sealing, IP67
Mounting hole:	M8 (TMM-12), UNC 5/16" (TMM-13),
	90° countersunk
Torque:	max. 15 Nm
Connector type:	SPM 15168 or compatible with 2 pin
- •	MIL-C-5015 style

 Technical data are subject to change without notice. ISO 9001 certified. ©Copyright SPM 2008-09. TD-279 B

Accessories for Vibration Transducers and Transmitters

Mounting accessories for vibration transducers and vibration transmitters of type SLD:

- TRX16 Magnetic mounting base, M8. Not recommended for measurements above 2000 Hz.
- TRX17 Hand-held probe tip, M8, in stainless steel. Not recommended for measurements above 1000 Hz.
- 15757 Mounting base, M8, stainless steel
- 15802 Mounting base, UNF1/4", stainless steel
- 15745 Glue-on adapter, M8, stainless steel, with an M4 for unloading and fixing
- 15868 Glue-on adapter, UNF1/4", stainless steel, with an M4 for unloading and fixing
- 15585 Extension base, length 30 mm, M8, stainless steel
- 15586 Extension base, length 80 mm, M8, stainless steel
- 16000 Mounting base for transducer with side entry, M8, stainless steel

6

Accessories for Remote Monitoring

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com Technical data are subject to change without notice. ISO 9001 certified. © SPM Instrument AB. 71700 B

Transducer Matching Unit TMU 12

Transducer Matching Unit TMU-12 is an impedance converter for all permanently installed SPM bearing monitoring systems. It is placed between the shock pulse transducer type SPM 40000 and the measuring device or measuring terminal. The bracket on the TMU is fastened with two mounting screws to the machine or machine foundation. The round connector base faces towards the transducer.

The TMU is used to extend the length of the coaxial cable between transducer and measuring device from max. 4 m to max. 100 m. The distance between the TMU and the transducer is always max. 4 m.

TMU-12 is suitable for both chemically basic and acid environments. For installations in moist environments, it is necessary to use sealing TNC cable plugs SPM 13008 to prevent cable corrosion.

Technical data

Casing	stainless acid proof steel,
	Sandvik Grade:1802, EN:1.4523,
	and fluor rubber
Sealing	IP 65 with TNC connector, IP 67 with
	sealed TNC connector (SPM 13008)
Temperature range	-30° to +100° C
Dimensions	75 x ø42 mm
Weight	140 grams
Connectors	TNC jacks
Cable length	max. 100 m
Fastening screws	2 x M4, stainless acid proof steel
	-

Technical data are subject to change without notice. ISO 9001 certified. © Copyright SPM 2008-09. TD-055 B

Terminal cabinet 14318

The terminal cabinet 14318 can recieve up to 16 coaxial cables from shock pulse and vibration transducers. The individual cable is inserted through the chloroprene seal in the bottom plate. Afterwards, a BNC terminal connector SPM 93090 is crimped on to the transducer cable. The BNC terminal connectors are ordered separately.

Readings are taken using a coaxial cable with a BNC jack SPM 93060.

Technical data

Dimensions	240 x 180 x 150 mm
Mounting holes	M6, spacing 181 x 121
Casing	Stainless steel, SS142333
Door lock	Removable key
Protection class	IP 66
Temperature range	–30 to +80 YC
Cable inlets	Chloroprene, IP 67
Cable diameter	5 to 7 mm

Ordering numbers

14318 Terminal cabinet

93090 BNC terminal connector, crimp

Accessories for Remote Monitoring

The terminal bracket SPM 13778 is supplied with holes for 12 sealed terminal connectors 13777 (TNC-TNC) or 13781 (TNC-BNC) alternatively crimp connectors SPM 93090 (BNC) or 93113 (TNC). The bracket is made of PVC and can easily be divided into desired number of holes.

The parts SPM 10393 and 12112 are bulkhead unions (measuring terminals) for thicker walls or partitions (max 25 mm and 50 mm respectively). They have TNC jacks on both sides and are supplied with sealing ring and a dust cap.

The sealing sleeves are used to attach a flexible protection tube (32 mm inner dia.). The sleeve SPM 10392 can only be used together with standard transducers. The transducer is pressed through the teflon sealing when tightening. The sleeve SPM 10396 can be used together with bulkhead unions SPM 10393 and 12112.

Technical Data

Terminal bracket 13778

Material:PVCDimensions:310 x 25 x 25 x 3 mmTemp. range:-201°to +701°C

- Bulkhead union10393 and12112Material:Nickel plated brass
- Sealing sleeve 10392 for transducer Material: Brass/Reinforced teflon
- Sealing sleeve 10396 for bulkhead union Material: Brass/Nitrile

Part Numbers

13778	Terminal bracket
10393	Bulkhead union, max. wall thickness 50 mm
12112	Bulkhead union, max. wall thickness 25 mm
10392	Sealing sleeve for transducer
10396	Sealing sleeve for bulkhead union

Terminal Connectors

The terminal connectors SPM 13777 (TNC-TNC) and 13781 (TNC-BNC) are mainly used as measuring terminals, connecting a hand-held shock pulse meter with a permanently installed shock pulse transducer. They are then normally mounted on the terminal bracket SPM 13778.

The terminal connectors can also be used as bulkhead unions for walls with a thickness of up to 4.5 mm. A sealed connection is achieved by using SPM 13008 as TNC cable connector.

The open end of the connectors should always be protected by dust caps, SPM 93035 for TNC and SPM 93061 for BNC.

Technical data

35 mm
TNC
17 mm
ø14 mm
4.5 mm
Stainless acid proof steel,
Sandvik Grade:1802, EN:1.4523
Nickel plated brass

Ordering numbers

13777	Terminal connector, TNC-TNC
13781	Terminal connector, TNC-BNC

Cables, Connectors and Tools

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com Technical data are subject to change without notice. ISO 9001 certified. \circledcirc SPM Instrument AB. 71700 B

Coaxial cables and accessories

Coaxial cables for shock pulse transducers and vibration transducers with pre-amplifier

- 45011-L Cable with connectors, TNC-TNC, -10 to 70 °C
- 45300-L Cable with connectors, TNC-TNC, -55 to 150 C
- 46012-L Cable with connectors, TNC-TNC, -10 to 70 °C
- 46041-L Cable with connectors, TNC-TNC, -55 to 150 °C
- 46050-L Cable with connectors, TNC-SMB, -10 to 70 °C
- 46057-L Cable with connectors, TNC-TNC, -55 to 150 °C
- 46058-L Cable with connectors, TNC-TNC, -10 to 70 °C
- 46080-L Cable with connector, 2pin, -55 to 150 °C
- 46081-L Cable with connectors, 2pin-TNC, -10 to 70 °C
- 46097-L Cable with connectors, 2pin-BNC, -10 to 70 °C
- 47125-L Cable with TNC sealing connectors, -55 to 150 °C
- 90005-L Coaxial cable without connectors, -10 to 70 °C
- 90267-L Coaxial cable without connectors, -55 to 150 °C

Accessories

- 10473 Sealing cover for TNC/BNC connector
- 81018 PVC sleeve for TNC/BNC crimp connector
- 82166 Neoprene tube for cable 90267-L
- 81385 Protection tube, outer diameter 9.3 mm, stainless acid proof steel
- 82414 Clips JR 9.5 mm, stainless steel
- 82415 Clips JR 9.5 mm, stainless acid proof steel
- 15716 Sleeve for protection tube, stainless steel
- 15761 Fitting for protection tube, stainless steel, thread for locknut M10 x 1
- 15762 End piece for protection tube, stainless steel
- 15866 Coupler for protection tube, stainless steel

Coaxial cables for vibration transducers without pre-amplifier

- 46044-L Low noise cable with TNC connectors, -10 to 70 °C, L = max. 10 m
- 46045-L Low noise coaxial cable with one standard TNC and one sealing connector (SPM 13008), -10 to 70 °C, L = max. 10 m
- 46059-L Low noise cable with TNC connectors, -10 to 70 °C, L = max. 10 m
- 90176-L Low noise coaxial cable without connectors, -10 to 70 °C
- 90292-L Low noise coaxial cable without connectors, $-65\ to\ 150\ ^\circ C$

Coaxial cable for vibration transducer TRV-01

46019-L Low noise cable with connectors, TNC-SMA, -10 to 70 °C, L = max. 10 m

Note:

When ordering cables and/or protection tube, please state the desired length (L) in meters.

Twisted pair cables and accessories

- 90381 Twisted pair cable, TEFZEL, AWG 20, diam. 4.8 mm Temp. range -65 to +200 °C (-85 to +392 °F)
- 90389 Twisted pair cable, PUR, AWG 20, diam. 4.8 mm Temp. range -40 to +90 °C (-40 to +194 °F)
- 46098-L Twisted pair cable 90381 with 2-pin connector 15168, -65 to +200 $^\circ C$ (-85 to +392 $^\circ F)$
- 46099-L Twisted pair cable 90389 with 2-pin connector 15168, -40 to +90 °C (-40 to +194 °F)
- 46105-L Twisted pair cable 90381 with 2-pin connector, stainless steel, -65 to +200 °C (-85 to +392 °F)
- 46106-L Twisted pair cable 90389 with 2-pin connector, stainless steel, -40 to +90 °C (-40 to +194 °F)

- 81385 Protection tube, outer diameter 9.3 mm, stainless acid proof steel
- 82414 Clips JR 9.5 mm, stainless steel
- 82415 Clips JR 9.5 mm, stainless acid proof steel
- 15716 Sleeve for protection tube, stainless steel, required to enable dismounting of the protection tube
- 15761 Fitting with locknut M10 x 1 for protection tube, stainless steel
- 15762 End piece for protection tube, stainless steel
- 15866 Coupler for protection tube, stainless steel

Note: When ordering cables and protection tubes, please state the desired length (L) in meters.

Connectors and accessories for coaxial cables

The listed equipment is used for SPM coaxial cable installations for shock pulse and vibration monitoring. See SPM installation instructions and application descriptions for details.

TNC connections

13777	TNC-TNC terminal connector
13781	TNC-BNC terminal connector
93022	TNC cable connector, plug, crimp
93031	TNC cable connector, plug, screw-type
93032	TNC angle adapter, plug-jack
93033	TNC adapter, jack-jack
93035	TNC dust cap for jack
93047	TNC cable connector, jack, crimp
93067	TNC-BNC adapter, plug-jack
93077	TNC angle connector, crimp
93091	TNC terminal connector, flange, crimp
93113	TNC terminal connector, crimp
93121	TNC cable connector, crimp, for cable 90146
93129	TNC angle connector, solder/crimp, for
	cable 90146
93149	Contact pin, TNC/BNC for cable 90176
93156	TNC cable connector, screw-type with strain
	relief, solder/screw type
Sealed TN	IC connections
13008	TNC cable plug, crimp (see TD-009)

- 15163 TNC cable plug, crimp (see TD-262)
- 15291 TNC cable plug, composite, crimp (see TD-257)
- 13268 TNC adapter, jack-jack, for sealed connection
- 13443 Sealing plug for TNC connector 13008

BNC connections

- 93060 BNC cable connector, plug crimp
- 93061 BNC dust cap
- 93062 BNC-TNC adapter, plug-jack
- 93090 BNC terminal connector, crimp
- 93105 BNC angle connector, crimp
- 93119 BNC terminal connector, flange, crimp
- 93363 BNC-LEMO adapter (fits Bearing Checker)

SMA connections

- 93103 SMA cable connector, plug, crimp (fits TRV-01)
- 93120 SMA cable connector, crimp, for cable 90146

SMB connections

93286 SMB cable connector, crimp

Sealed SMB connections

- 14990 SMB cable plug, crimp (see TD-248)
- 15164 SMB cable plug, crimp (see TD-261)
- 15388 SMB cable plug, composite, crimp (see TD-258)

Sealed Connectors - Overview

The listed equipment is used for SPM cable installations for shock pulse and vibration monitoring. See specific data sheets (TD) for installation descriptions and technical specifications

Article no.	Connector	Туре	Protection	Material	Fitting for protection tube	TD sheet
13008	TNC	plug	IP67	stainless steel	no	TD-009
15837	TNC	plug	IP67	stainless steel	yes	TD-292
15291	TNC	plug	IP67	composite	yes	TD-257
13268	TNC	jack-jack	IP67	stainless steel	no	TD-025
14990	SMB	plug	IP67	stainless steel	no	TD-248
15869	SMB	plug	IP67	stainless steel	yes	TD-294
15388	SMB	plug	IP67	composite	yes	TD-258
15168	2-pin	jack	Ex, IP67	composite	yes	TD-217
15836	2-pin	plug	Ex, IP67	composite	yes	TD-291
46105-L	2-pin	jack with integrated cable -65° to +200°C *	Ex, IP67	stainless steel	yes	TD-296
46106-L	2-pin	jack with integrated cable, -40° to +90°C *	Ex, IP67	stainless steel	yes	TD-296

* When ordering connector with integrated cable, please state the desired cable length (L) in meters.

TNC Cable Plug 13008

SPM 13008 is a special TNC cable plug for SPM installations in moist environments. It prevents moisture from entering the coaxial cable and causing loss of signal strength. The cable plug fits standard shock pulse transducers and other SPM measuring equipment with TNC jacks having a ø 14 mm connector base. It must be used wherever the TNC connection is exposed to water, steam, or high humidity.

The cable seal, marked A below, seals the cable entry when the connector collet is tightened. The sealing ring marked B is placed over the receiving TNC jack and seals the other end of the connection.

Note: The connector package contains two cable seals (A) of different sizes, marked in different colours:

- green seal for cable diameter 4 mm
- black seal for cable diameter 5 mm.

Use the appropriate seal and discard the other. Lubricate the thread with oil or grease. Tighten the connector with a 14 mm open wrench.

The instruction for cable stripping is included in the package. SPM offers two tools for connector mounting:

81052 Cutting tool for stripping coaxial cables81026 Crimping tool for fitting cable connectors.

To join two cables in moist environment, use the TNC adapter SPM 13268 (separate data sheet) together with two cable connectors SPM 13008.

Technical data:

Material, connector body: Stainless acid proof steel,

Connector type: Seals: Torque: Sandvik Grade:1802, EN:1.4523 TNC plug Viton (fluor rubber) Min. 7 Nm / Max. 9 Nm

Technical data are subject to change without notice. ISO 9001 certified. @ Copyright SPM 2005-03. TD-09 B

TNC Cable Plug 15837

SPM 15837 is a sealed TNC cable plug designed for use with cable protection tube (SPM 81385). The plug prevents moisture from entering the coaxial cable and causing loss of signal strength. It fits standard shock pulse transducers and other SPM measuring equipment with TNC jacks having a \emptyset 14 mm connector base. It can be used wherever the TNC connection is exposed to water, steam, or high humidity.

The cable seal, marked A in the figure, seals the cable entry when the connector collet is tightened. The sealing ring marked B is placed over the receiving jack and seals the other end of the connection.

Note: The connector package contains two cable seals (B) of different sizes, marked in different colours:

- green seal for cable diameter 4 to 4.5 mm
- black seal for cable diameter 4.5 to 5.2 mm.

Use the appropriate seal and discard the other. Lubricate the thread with oil or grease. Tighten the connector with a 14 mm open wrench.

The instruction for cable stripping is included in the package. SPM offers two tools for connector mounting:

81052	Cutting tool for stripping coaxial cables
81026	Crimping tool for fitting cable connectors.

Technical data:

Material, connector body: Stainless acid proof steel

	AISTOTE
Connector type:	TNC plug
Seals:	Viton (fluor rubber), IP67
Torque:	Min. 7 Nm / Max. 9 Nm

TNC Adapter for Sealed Installation

SPM 13268 is a special TNC adapter (jack - jack) for joining two coaxial cables. It is used to repair broken cables or to prolong cables during installation.

In environments where the connection is exposed to water, steam, or high humidity, the cable plugs must be of type SPM 13008. This type of plug prevents moisture from entering the coaxial cable and causing loss of signal strength. The sealing rings are placed over the receiving TNC jacks of the adapter. The connection is tightened with two 14 mm open wrenches until the sealing rings are slightly flattened against the adapter body.

Technical Data

Material, adapter body:
Connector tightness
Connector type:

Stainless acid proof steel, Sandvik Grade:1802, EN:1.4523 IP65 with TNC connector IP67 with conn. SPM13008 TNC jack

TNC Cable Plug 15291

SPM 15291 is a TNC cable plug made of composite material and has sealings which prevent moisture from entering the cable causing loss of signal strength. The cable plug fits standard shock pulse transducers and other SPM measuring equipment with TNC jacks. It must be used wherever the TNC connection is exposed to water, steam, or high humidity.

The end (A) of the connector is designed for use with cable protection tube. The connector can easily be mounted in the field by crimping/soldering.

The cable seal, marked B in the figure, seals the cable entry when the connector collet (A) is tightened. Note: The connector package contains two cable seals (B) of different sizes, marked in different colours.

- Green seal for cable diameter 4 to 4.5 mm
- Black seal for cable diameter 4.5 to 5.2 mm.

Use the appropriate seal and discard the other. Lubricate the thread with oil or grease. Tighten the collet (A) by hand or with a 10 mm open wrench, 2 to 2.5 Nm. The instruction for cable stripping is included in the package.

SPM offers two tools for connector mounting:81052 Cutting tool for stripping coaxial cables81026 Crimping tool for fitting cable connectors.

Technical Data

Mounting: Wire range/size: Temperature range: Crimp/solder termination Coaxial cable diam. 4–5.2 mm – 40° C to +150° C (–40° F to 302° F)

Material, connector body: Composite Contact plating: Gold Seals: Viton (fluor

Gold Viton (fluor rubber), IP 67

SMB Cable Plug 14990

The sealed SMB cable plug SPM 14990 fits SPM vibration transducers of type SLD with SMB connector.

The cable seal, marked B in the figure, seals the cable entry when the connector collet is tightened. The sealing ring marked G is placed over the receiving jack and seals the other end of the connection.

Note: The connector package contains two cable seals (B) of different sizes, marked in different colours:

- green seal for cable diameter 4 to 4.5 mm
- black seal for cable diameter 4.5 to 5.2 mm.

Use the appropriate seal and discard the other. Lubricate the thread with oil or grease. Tighten the connector with a 14 mm open wrench.

The instruction for cable stripping and crimping is included in the package. SPM offers tools for connector mounting:

- 81052 Cutting tool for stripping coaxial cables
- 81101 Insert for cutting tool 81052
- 81026 Crimping tool for fitting cable connectors.

Technical data:

Material, connector body: Stainless acid proof steel,

	AISI STOL
Connector type:	SMB
Seals:	Viton (fluor rubber)
Torque:	Min. 7 Nm / Max. 9 Nm

Technical data are subject to change without notice. ISO 9001 certified. ©Copyright SPM 2006-01. TD-248 B

The sealed SMB cable plug SPM 15869 fits SPM vibration transducers of type SLD with SMB connector. The end of the cable plug is designed for use with cable protection tube (SPM 81385).

The cable seal, marked B in the figure, seals the cable entry when the connector collet is tightened. The sealing ring marked G is placed over the receiving jack and seals the other end of the connection.

Note: The connector package contains two cable seals (B) of different sizes, marked in different colours:

- green seal for cable diameter 4 to 4.5 mm
- black seal for cable diameter 4.5 to 5.2 mm.

Use the appropriate seal and discard the other. Lubricate the thread with oil or grease. Tighten the connector with a 14 mm open wrench.

The instruction for cable stripping and crimping is included in the package. SPM offers tools for connector mounting:

81052	Cutting	tool for	stripping	coaxial	cables
01002	Gutting	1001101	Jupping	countin	Cubics

- 81101 Insert for cutting tool 81052
- 81300 Crimping tool for fitting cable connectors.

Technical data:

Material, connector body: Stainless acid proof steel,

AISI 316L
SMB
Viton (fluor rubber), IP67
Min. 7 Nm / Max. 9 Nm

Technical data are subject to change without notice. ISO 9001 certified. ©Copyright SPM 2008-09. TD-294 B

SMB Cable Plug 15388

SPM 15388 is a SMB cable plug for connection of vibration transducers of type SLD with SMB connector. It is made of composite material and has sealings which prevent moisture from entering the cable causing loss of signal strength.

The end (A) of the connector is designed for use with cable protection tube. The connector can easily be mounted in the field by crimping/soldering.

The cable seal, marked B in the figure, seals the cable entry when the connector collet (A) is tightened. Note: The connector package contains two cable seals (B) of different sizes, marked in different colours.

- Green seal for cable diameter 4 to 4.5 mm
- Black seal for cable diameter 4.5 to 5.2 mm.

Use the appropriate seal and discard the other. Lubricate the thread with oil or grease. Tighten the collet (A) by hand or with a 10 mm open wrench, 2 to 2.5 Nm. The instruction for cable stripping is included in the package.

SPM offers two tools for connector mounting:81052 Cutting tool for stripping coaxial cables81101 Insert for cutting tool 8105281300 Crimping tool for fitting cable connectors.

Technical Data

Mounting: Wire range/size: Temperature range: Crimp/solder termination Coaxial cable diam. 4–5.2 mm – 40° C to +150° C (–40° F to 302° F)

Material, connector body: Composite Contact plating: Gold Seals: Viton (fluor

Gold Viton (fluor rubber), IP 67

SPM 15168 is a 2-pin MIL style cable jack for connection of vibration transducers of type SLD to twisted pair cable or coaxial cable. It is specially designed for extreme environmental conditions and for applications with potentially explosive atmosphere. The end (A) of the connector is designed for use with cable protection tube. The connector can easily be mounted in the field, either by crimping or soldering.

The cable seal, marked B in the figure, seals the cable entry when the connector collet (A) is tightened. Note: The connector package contains 3 sockets (D) and 2 cable seals (B) of different sizes, marked in different colours.

- Green seal for cable diameter 4 to 4.5 mm
- Black seal for cable diameter 4.5 to 5.2 mm.

To mount the connector, slide the parts A, B and C over the cable. Cut and strip the cables as shown in the figure and crimp/solder the sockets (D). Use the socket 16-18 AWG for the shield when using coaxial cable. Mount the sealing ring (I) on the contact body (H). Slide the nut (E) over the connector body and mount the sealing ring (F). Push the sockets (D) into the connector body and secure them by mounting the locking pin (G). Mount the connector on a transducer and tighten first part E and then part C by hand. Tighten the collet (A) with a suitable tool, 2 to 2.5 Nm.

Technical Data

Certificate of conformity: Ex certification:	NEMKO 05ATEX1179 I M1/II 1GD T 112°C EEx ia I/ IIC T4 (for Group II category 1G, see CENELEC EN 50284 4.4.1) Not recommended for Group I.
CE number:	CE 0470
Mounting:	Crimp/solder termination
Wire range/size:	0.30 - 0.60 mm²/22-20 AWG 0.75 - 1.5 mm²/16-18 AWG
Temperature range:	– 40° C to +150° C (–40 ° F to 302° F)
Material, connector body:	Composite
Contact plating:	Gold
Seals:	Viton (fluor rubber), IP 67

œ

2-pin Cable Plug 15836

SPM 15836 is a sealed 2-pin MIL style cable plug for twisted pair cable or coaxial cable and is used together with cable plug SPM 15168 as cable joint. The end (A) of the connector is designed for use with cable protection tube (SPM 81385). The connector can easily be mounted in the field, either by crimping or soldering.

The cable seal, marked B in the figure, seals the cable entry when the connector collet (A) is tightened. Note: The connector package contains 3 contact pins (D) and 2 cable seals (B) of different sizes, marked in different colours.

- Green seal for cable diameter 4 to 4.5 mm
- Black seal for cable diameter 4.5 to 5.2 mm.

To mount the connector, slide the parts A, B and C over the cable. Mount the sealing ring (E) on the connector body (G). Cut and strip the cable as shown in the figure (2) and crimp/ solder the cables into the contact pins (D). Use the contact pin 16-18 AWG for the shield when using coaxial cable. Push the connector pins (D) into the connector body and secure them by mounting the locking pin (F). Mount the sleeve (C) on the connector body and tighten by hand. Mount the collet (A) and tighten with a suitable tool, 2 to 2.5 Nm.

Technical Data

Mounting:	Crimp/solder termination
Wire range/size:	0.30 - 0.60 mm ² /22-20 AWG 0.75 - 1.5 mm ² /16 - 18 AWG
Temperature range:	– 40° C to +150° C (–40 ° F to 302° F)
Material, connector body:	Composite
Contact plating:	Gold
Seals:	Viton (fluor rubber), IP 67

2-pin Cable Jack with Integrated Cable

SPM 46105-L and 46106-L are 2-pin MIL style cable jacks with integrated twisted pair cable for connection of vibration transducers of type SLD. They are specially designed for extreme environmental conditions and for applications with potentially explosive atmosphere. The end of the connector is designed for use with cable protection tube SPM 81385 with sleeve SPM 15716.

Note: When ordering cables please state the desired length (L) in meters.

Technical Data

Certificate of conformity: Ex certification:	NEMKO 05ATEX1179X I M1/II 1GD T 112°C EEx ia I/IIC T4 (for Group II category 1G, see CENELEC EN 50284 4.4.1). Recommeded for Group I.
CE number: Type: Material, body: Contact plating: Seals:	 € 0470 2 pin MIL style, female Stainless steel Gold Viton (fluor rubber), IP 67
Temperature range: 46105-L 46106-L	-65 to +200 °C (-65 to +392 °F) -40 to +90 °C (-40 to +194 °F)

Service Box 15758

The Service Box 15758 is a protective cover for cable joint specially designed for extreme environmental conditions. It is made of stainless acid proof steel, AISI 316, and has an access opening in the bottom.

It is mounted in upright position with two mounting screws, diameter max. 7 mm. The cable clamp and the retaining pin will secure the cable joint inside the box.

Tools for fitting cables and connectors

The listed tools are used to prepare coaxial cables and to mount connectors for SPM installations, both for shock pulse and vibration monitoring.

Crimping tool SPM 81026 and SPM 81300 are used for coaxial cables, SPM 81051 for single conductor cables.

Cutting tool 81052 has a replaceable knife cassette. The standard cassette is used for coaxial cables with TNC/BNC connectors and the replacement cassette 81101 for co-axial cables SMB connectors.

- 81026 Crimping tool for fitting TNC/BNC connectors
- 81051 Crimping tool for fitting tab terminals
- 81052 Cutting tool for coaxial cables with TNC/BNC connectors
- 81101 Replacement cassette for cutting tool 81052, used for coaxial cables with SMB connectors
- 81127 Fitting tool for connectors with strain relief
- 81130 Expansion pliers for fitting neoprene tube SPM 82166
- 81300 Crimping tool for fitting SMB connectors

Diagnostic Tools for Maintenance

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com Technical data are subject to change without notice. ISO 9001 certified. © SPM Instrument AB. 71700 B

Vibrameter VIB-10 (VIB-11) has been designed as a simple diagnostic tool for preventive maintenance. The instrument and the monitoring technique are based on the recommendations of ISO and the equivalent national standard organizations BS, VDI, etc.

These standards make the assumption that limited information, obtained easily and at a low cost, is often as useful as a detailed analysis at the price of expensive equipment and elaborate techniques. They state that it is possible to detect even minor changes in the operating condition of a machine by measuring its general vibration level. It is assumed that, once the change has been noted, a competent inspector or repair crew will be able to find the actual defects which caused it. The evaluation of machine condition is based on a single parameter, vibration severity. This means that the instrument needs to display only one measured value, which reduces its cost and makes it easy to handle.

The standards also provide a set of norm values for the common types of industrial plant. The readings obtained on a particular machine are interpreted by comparing them with the norm values for similar machines.

Part Numbers

VIB-10B	Vibrameter mm/s, incl. battery cells
VIB-11B	Vibrameter in/s, incl.battery cells
TRV-22	Vibration transducer, M8
TRV-23	Vibration transducer, UNF 1/4"-28
TRX-16	Magnetic base for transducer TRV-22
TRX-17	Probe for transducer TRV-22
46044	Measuring cable with connectors, 1.5 m
46045	Measuring cable with sealing TNC plug, 1.5 m
VIC-11	Follow-up forms mm/s (VIB-10), pad of 25
VIC-12	Follow-up forms in/s (VIB-11), pad of 25
VIC-13	Follow-up forms, balancing, pad of 25
90022	Battery

Technical data

Measuring range	VIB-10B: 0.5 to 99.9 mm/s RMS,
	VIB-11B: 0.01 to 3.93 in/s RMS,
	10 to 1000 Hz
Resolution:	0.1 mm/s (0.01 in/s)
Accuracy	2% \pm 0.2 mm/s (2% \pm 0.02 in/s)
Power supply	Four 1.5 V alkaline cells
	(e.g. MN 1500 or UCAR E91)
Temp. range	0 to +55 YC (32 to 131 YF)
Display	3 digits, red LED
Switch-off	Automatic
Protective cover	Polyurethane
Dimensions	210 x 75 x 30 mm
	(8.3" x 2.9" x 1.2")
Weight	410 grams (14 oz) incl. batteries
Connector type	TNC

SPM Instrument AB • Box 4 • SE-645 21 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.se

Battery powered monitoring instrument for a large number of applications. ELS-12 is a sensitive electronic listening device for all kinds of mechanical noise within machinery: valve chatter, piston slap, gear and pump noise, electric relay operation, etc. Noise sources are located with the probe tip (length 60 or 290 mm). The sound is fed via an amplifier with volume control to the headset. Ear defenders shut out background noise.

Part Numbers

- ELS-12 Electronic Stethoscope
- ELT-10 Probes, 60 and 290 mm
- EAR-10 Earphone incl. spiral cable
- 90109 Battery, 9 V, type IEC6LG22

Technical Data

Casing:	Splash proof ABS plastic
Nominal battery voltage:	9 V
Temperature range:	0Yto + 55YC
Weight:	300 g incl. battery and probe
Dimensions:	205 x 50 x 40 mm

Precut Shims

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com Technical data are subject to change without notice. ISO 9001 certified. \circledcirc SPM Instrument AB. 71700 B

Precut shims

The line of shimming materials contains five different sizes, fitting almost any type of machine foot. The user can choose between solid stainless steel shims and laminated shims in either brass or stainless steel.

Solid shims in stainless steel

Solid shims can be provided in a handy box, containing 10 shims each of 5 different thicknesses, from 0.05 to 1 mm. They are also available as packs of 10 in single thickness, in accordance with ordering number tables.

Laminated shims

Packs of 20 laminated shims are available in either brass or stainless steel. Each shim has a thickness of 1.00 mm, divided into 12 layers. Laminated shims always fit - just peel off the required thickness.

Cases with solid shims

Solid shims in stainless steel are available packaged in convenient aluminium framed cases with a compartmentalised high density foam insert. The refillable cases are available with four different assortments. The cases are overall $350 \times 160 \times 280$ mm except for SHIMCASE 4 which is 540 x 210 x 320 mm.

Ordering numbers, cases with solid shims

- SHIMCASE 1 360 shims: 2 x S1-, S2- and S3-PAK + 2 x S1-, S2- and S3-200. Weight 13 kg.
- SHIMCASE 2 510 shims: 2 x S1-, S2- and S3-PAK + 2 x S1-, S2- and S3-020; 040; 070; 200. Weight 17 kg.
- SHIMCASE 3 340 shims: 2 x S3- and S4-PAK + 2 x S3and S4-020; 040; 070; 200. Weight 15 kg.
- SHIMCASE 4 720 shims: 2 x S1-, S2-, S3- and S4-PAK + 2 x S1-, S2-, S3- and S4-020; 040; 070; 200. Weight 26 kg.

10 stainless steel shims, single thickness

				Ordering numbers				
Din	nensi	on	Thickness (mm)					
Α	В	С	0.025	0.05	0.10	0.20	0.25	0.40
35	30	9		S0-005	S0-010	S0-020	S0-025	S0-040
50	50	13	S1-0025	S1-005	S1-010	S1-020	S1-025	S1-040
75	75	21	S2-0025	S2-005	S2-010	S2-020	S2-025	S2-040
100	100	32	S3-0025	S3-005	S3-010	S3-020	S3-025	S3-040
125	125	45	S4-0025	S4-005	S4-010	S4-020	S4-025	S4-040
200	200	55		S5-005	S5-010	S5-020	S5-025	S5-040

10 stainless steel shims, single thickness

	Ordering numbers						
Din	nensi	on	Thickness (mm)				
Α	В	С	0.50	0.70	1.00	2.00	3.00
35	30	9	S0-050	S0-070	S0-100		
50	50	13	S1-050	S1-070	S1-100	S1-200	S1-300
75	75	21	S2-050	S2-070	S2-100	S2-200	S2-300
100	100	32	S3-050	S3-070	S3-100	S3-200	S3-300
125	125	45	S4-050	S4-070	S4-100	S4-200	S4-300
200	200	55	S5-050	S5-070	S5-100	S5-200	S5-300

50 stainless steel shims, 10 of each thickness, 0.05 - 1.00 mm

Dimension			Ordering numbers
А	В	С	Thickness 0.05, 0.10, 0.25, 0.50 and 1.00 mm
50	50	13	S1-PAK
75	75	21	S2-PAK
100	100	32	S3-PAK
125	125	45	S4-PAK
200	200	55	S5-PAK

Laminated shims, pack of 20, thickness 1.00 mm

Dime	Dimension Ordering numbers		Ordering numbers	Ordering numbers	
A	В	С	Stainless steel	Brass	
50	50	13	LS1-PAK	LB1-PAK	
75	75	21	LS2-PAK	LB2-PAK	
100	100	32	LS3-PAK	LB3-PAK	
125	125	45	LS4-PAK	LB4-PAK	
200	200	55	LS5-PAK	LB5-PAK	

10

Instruments Approved for Potential Explosive Atmosphere

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

Machine Condition Analyzer A30Ex

Part numbers

- A30-1Ex Machine Condition Analyzer A30 Basic Ex
- A30-2Ex Machine Condition Analyzer A30 Logger Ex
- A30-3Ex Machine Condition Analyzer A30 Expert Ex
- 13881 Communication module, Ex
- CAB-35 Computer cable, 9 pole female plugs
- 93162 Cable adapter 9 male/ 25 female
- CAS-14 Carrying case
- CAS-15 Carrying case with foam insert
- EMD-13 Carrying strap
- FUP-02 Follow-up form for A30Ex, pad of 25 (mm)
- FUP-04 Follow-up form for A30Ex, pad of 25 (inch)

Shock pulse measurement (SPM)

- TRA-34 Shock pulse transducer, probe assembly, ExTRA-35 Shock pulse transd. with quick connector, Ex
- 13980 Earphones, headset with ear defenders, Ex
- CAB-07 Cable for remote monitoring 1.5 m (5ft)

Vibration measurement

- TRV-26 Vibration transducer M8, Ex
- TRV-27 Vibration transducer 1/4" x 28 UNF, Ex
- TRX-16 Magnetic foot for vibration transducer
- TRX-17 Probe for vibration measurement
- VIC-19 Cable for vibration transducer

Speed measurement

- 13882 Tachometer probe with cable, Ex
- TAD-20 Contact adapter
- TAD-21 Contact center, rpm, short
- TAD-22 Contact center, rpm, long
- TAD-23 Contact wheel, meter / min.
- TAD-24 Contact wheel, yards / min.
- TAD-25 Contact wheel, feet / min.
- TAD-14 Reflecting tape, pad of 5 sheets
- TAD-16 Reflecting tape for thin shafts, 5 sheets

Temperature measurement

TEM-11Ex Temperature probe incl. cable

- TEN-10 Temperature probe tip surface
- TEN-11 Temperature probe tip liquid

Spare parts

- 13915 Probe tip for TRA-34
- 13108 Sleeve for probe tip (TRA-34)
- 13892 Handle for probe TRA-34
- CAB-34 Cable for TRA-34
- CAB-10 Spiral cable for 13980, 13882, TEM-11Ex
- 45011-1.5 Cable for TRA-35
- 90098 Battery, 1.5 V, alcaline, IEC LR6/AA, approved T4
- 90099 Battery, 1.5 V, alcaline, IEC LR6/AA, approved T3

Machine Condition Analyzer A30Ex

A30 Ex is a machine condition analyzer designed for a reliable preventive maintenance of industrial machines. A30 Ex is available in three versions. With "Basic", measuring results are recorded manually. "Logger" is a data logger and works together with SPM software Condmaster[®]. "Expert" has all the logger features. In addition, it uses the EVAM[®] method for vibration analysis. A "Basic" version can be upgraded to "Logger" and "Expert".

Measuring techniques	Analyzer A30 EX		
and other features	Basic	Logger	Expert
Shock pulse, LR/HR	•	•	•
Vibration severity, ISO 10816	•	•	•
Temperature measurement	•	•	•
Speed, contact and optical	•	•	•
Continuous reading	•	•	•
Data logging with Condmaster®		•	•
Alternative measuring systems		•	•
Selectable comments		•	•
Display of check points		•	•
Long time recording		•	•
Vibration spectrum			•
Evaluated vibration analysis (EVAM)			•

Instrument specifications

Certificate of	
conformity:	NEMKO 03 ATEX 185
Ex certification:	I M2/II 2G EEx ib I/IIB T4/T3
CE Number:	CE 0470
Enclosure:	IP43
General features:	language selection, battery test, continuous reading, transducer line test, automatic idle / power off
Temperature range:	0 to +50 °C (32 to 120 °F)
Power supply:	6 x 1.5 V LR6 alkaline cells, approved
Battery life:	power down 1 year, or 5000 typical measurements, or continuous recording 50 hours
Size:	255 x105 x 60 mm (10 x 4.2 x 2.4 in)
Weight:	0.85 kg (1.9 lb)
Casing / protective cover:	polyurethane, conductive
Keypad:	sealed membrane
Display:	LCD, 4x16 characters LED, backlight adjustable, automatic on/off
Memory:	typical 500, max. 999 meas. points
Backup, memory/clock:	approx, 24 h.

Shock pulse (SPM[®] LR/HR)

Measuring range:	–19 to 80 dBsv
Resolution:	1 dBsv
Accuracy:	± 1 dBsv

Vibration severity (ISO 10816)

0.5 to 49.9 mm/s RMS	
(0.02 to 2.0 in/s RMS)	
0.1 mm/s (0.01 in/s)	
\pm (0.2 mm/s +2% of reading)	
3 to 1000 Hz	

Speed measurement

Measuring range:	10 to 19 999 rpm optical
Measuring distance:	max. 0.6 m (2 ft.)
Resolution:	1 rpm
Accuracy:	± (1 rev. + 0.1% of reading)

Temperature measurement

Measuring range:	0 to +300 °C (+32 to +572 °F)
Resolution:	1 °C (1 °F)

Alternative measuring systems

No. per meas.point:	2
Additional information:	date / time and comments

Long time recording

Measuring parameters:	SPM, VIB, temperature/speed
Measuring interval:	adjustable 0 - 60 minutes

Vibration analysis (EVAM®)

Window:	Hanning		
Number of samples:	1024 / 2048		
FFT result:	400 / 800 spectrum lines		
Range, resolution	3 to 200 Hz, 0.5 / 0.25 Hz		
at 400 / 800 lines:	3 to 500 Hz, 1.25 / 0.625 Hz		
	3 to 1000 Hz, 2 .5 / 1.25 Hz		
	3 to 2000 Hz, 5.0 / 2.5 Hz		
	3 to 5000 Hz, 12.5 / 6.25 Hz		
Lines displayed:	15 highest, toggle Hz / cpm		
Lines saved:	1 to 200 highest		

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 225 00 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

Machine Condition Tester T30Ex

Part numbers

- T30-1Ex Machine Condition Tester T30 Basic Ex
- T30-2Ex Machine Condition Tester T30 Logger Ex
- T30-3Ex Machine Condition Tester T30 Expert Ex
- 13881 Communication module, Ex
- CAB-35 Computer cable, 9 pole female plugs
- 93162 Cable adapter 9 male/ 25 female
- EMD-13 Carrying strap
- CAS-14 Carrying case
- CAS-15 Carrying case with foam insert
- FUP-01 Follow-up form for T30Ex, pad of 25 (mm)
- FUP-03 Follow-up form for T30Ex, pad of 25 (inch)

Shock pulse measurement (SPM)

- TRA-34 Shock pulse transducer, probe assembly, Ex
- TRA-35 Shock pulse transd. with quick connector, Ex
- 13980 Earphones, headset with ear defenders, Ex
- CAB-07 Cable for shock pulse terminal, 1.5 m (5 ft)

Vibration measurement

- TRV-26 Vibration transducer M8, Ex
- TRV-27 Vibration transducer 1/4" x 28 UNF, Ex
- TRX-16 Magnetic foot for vibration transducer
- TRX-17 Probe for vibration measurement
- VIC-19 Cable for vibration transducer

Speed measurement

- 13882 Tachometer probe with cable, Ex
- TAD-20 Contact adapter
- TAD-21 Contact center, rpm, short
- TAD-22 Contact center, rpm, long
- TAD-23 Contact wheel, meter / min.
- TAD-24 Contact wheel, yards / min.
- TAD-25 Contact wheel, feet / min.
- TAD-14 Reflecting tape, pad of 5 sheets
- TAD-16 Reflecting tape for thin shafts, 5 sheets

Temperature measurement

TEM-11Ex Temperature probe incl. cable

- TEN-10 Temperature probe tip surface
- TEN-11 Temperature probe tip liquid

Spare parts

- 13915 Probe tip for TRA-34
- 13108 Sleeve for probe tip (TRA-34)
- 13892 Handle for probe TRA-34
- CAB-34 Cable for TRA-34
- CAB-10 Spiral cable for 13980, 13882, TEM-11Ex
- 45011-1.5 Cable for TRA-35
- 90098 Battery, 1.5 V, alcaline, IEC LR6/AA, approved T4
- 90099 Battery, 1.5 V, alcaline, IEC LR6/AA, approved T3

Machine Condition Tester T30Ex

T30 Ex is a machine condition analyzer designed for a reliable preventive maintenance of industrial machines. T30 Ex is available in three versions. With "Basic", measuring results are recorded manually. "Logger" is a data logger and works together with SPM software Condmaster®. "Expert" has all the logger features. In addition, it uses the EVAM $^{\! @}\,$ method for vibration analysis. A \qquad "Basic" version can be upgraded to "Logger" and "Expert".

Measuring techniques and other features	Ana Basic	lyzer T3 Logger	0 EX Expert
Shock pulse, dBm/dBc	•	•	•
Vibration severity, ISO 10816	•	•	•
Temperature measurement	•	•	•
Speed, contact and optical	•	•	•
Continuous reading	•	•	•
Data logging with Condmaster®		•	•
Alternative measuring systems		•	•
Selectable comments		•	•
Display of check points		•	•
Long time recording		•	•
Vibration spectrum			•
Evaluated vibration analysis (EVAM)			•

Instrument specifications

Certificate of conformity:	NEMKO 03 ATEX 185
Ex certification:	I M2/II 2G EEx ib I/IIB T4/T3
CE Number:	CE 0470
Enclosure:	IP43
General features:	language selection, battery test, con- tinuous reading, transducer line test, automatic idle / power off
Temperature range:	0 to +50 °C (32 to 120 °F)
Power supply:	6 x 1.5 V LR6 alkaline cells, approved
Battery life:	power down 1 year, or 5000 typical measurements, or continuous record- ing 50 hours
Size:	255 x105 x 60 mm (10 x 4.2 x 2.4 in)
Weight:	0.85 kg (1.9 lb)
Casing / protective cover:	polyurethane, conductive
Keypad:	sealed membrane
Display:	LCD, 4x16 characters LED, backlight adjustable, automatic on/off
Memory:	typical 500, max. 999 meas. points
Backup, memory/clock:	approx. 24 h.

Shock pulse (SPM[®] dBm/dBc)

Measuring range:	–9 to 80 dBsv
Resolution:	1 dBsv
Accuracy:	± 1 dBsv

Vibration severity (ISO 10816)

Measuring range:	0.5 to 49.9 mm/s RMS	
	(0.02 to 2.0 in/s RMS)	
Resolution:	0.1 mm/s (0.01 in/s)	
Accuracy: ± (0.2 mm/s +2% of reading)		
Frequency range:	3 to 1000 Hz	

Speed measurement

Measuring range:	10 to 19 999 rpm optical
Measuring distance:	max. 0.6 m (2 ft.)
Resolution:	1 rpm
Accuracy:	\pm (1 rev. + 0.1% of reading)

Temperature measurement

Measuring range:	0 to +300 °C (+32 to +572 °F)
Resolution:	1 °C (1 °F)

Alternative measuring systems

No. per meas.point:	2
Additional information:	date / time and comments

Long time recording

Measuring parameters:	SPM, VIB, temperature/speed
Measuring interval:	adjustable 0 - 60 minutes

Vibration analysis (EVAM®)

Window:	Hanning
Number of samples:	1024 / 2048
FFT result:	400 / 800 spectrum lines
Range, resolution at 400 / 800 lines:	3 to 200 Hz, 0.5 / 0.25 Hz 3 to 500 Hz, 1.25 / 0.625 Hz 3 to 1000 Hz, 2 .5 / 1.25 Hz 3 to 2000 Hz, 5.0 / 2.5 Hz 3 to 5000 Hz, 12.5 / 6.25 Hz
Lines displayed:	15 highest, toggle Hz / cpm
Lines saved:	1 to 200 highest

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 225 00 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

Technical data are subject to change without notice. ISO 9001 certified. ©Copyright SPM 2007-04. TD-129 B

TRA-34 is a hand-held probe, which is used together with hand-held SPM Tester T30 and Analyzer A30 instruments of Ex design. The probe is directionally sensitive and must be held aligned against the bearing and not deviate from this direction by more than \pm 51°. The probe tip is spring loaded and moves within a sleeve made of chloroprene rubber and tolerates 110°C (230°F). Max. permanent temperature for the entire probe is 50°C (120°F). This probe is permitted for use in potentially explosive atmosphere.

Measuring points for the probe transducer should be located directly on the bearing housing and the signal path should be in a direct line to the contact area. The strongest shock pulses are emitted from the loaded region of the rolling interface in the bearing. The loaded region for radial load covers a sector of \pm 45° from the load direction, for axial load the region is 360°. Since the transfer of shock pulses to the bearing housing is limited by the width of the bearing, direct radiation of pulses will be restricted to a sector of \pm 60° from the perpendicular to the rolling surface. Measuring points should be clearly marked.

To maintain a steady pressure on the tip, press the probe tip against the measuring point until the rubber sleeve is in contact with the surface. Avoid pressing the probe tip against cavaties and fillets which are smaller than the probe tip.

NEMKO 03 ATEX 185
I M2/II 2 G EEx ib I/IIB T4
C€ 0470
0 to +50 YC (32 to 120 YF)

Part Numbers

TRA-34Shock pulse transducer, probe assemblyBEX-20Center drillBEX-21Rotary file

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

Technical data are subject to change without notice. ISO 9001 certified. © Copyright SPM 2005-03. TD-90 B

Transducer with Quick Connector and TMU

TRA-35 is a shock pulse transducer with quick connector that fits all SPM adapters. It is used together with hand-held SPM Tester T30 and Analyzer A30 instruments of Ex design. This transducer is specially designed for applications with potentially explosive atmosphere. It is provided with a transducer matching unit (TMU). Usually the transducer is connected to the instrument via a 1.5 m (5 feet) coaxial cable with TNC connections.

The transducer has bayonet catch. To attach the TRA-35 to an adapter, push the transducer firmly onto the adapter and twist it clockwise.

Twist counter clockwise to unfasten the transducer.

Technical Data

Certificate of conformity:	NEMKO 03 ATEX 185
Ex certification:	I M2/II 2 G EEx ib I/IIB T4
CE number:	€€ 0470
Measuring range:	Max. 80 dBsv
Design:	Sealed
Temperature range:	0Yto + 50YC (32Yto +120YF)
Material, spanner:	Blacknited steel
Material, handle:	Stainless steel
Connector:	TNC
Weight:	140 a

Part Numbers

- TRA-35 Shock pulse transducer for Ex-conditions incl. measuring cable 45011-1.5
- 45011-1.5 Measuring cable for transducer TRA-35, 1.5 m (5 feet)

Transducer and transformer for potentially explosive atmosphere

Shock Pulse Transducers

Transducer SPM 42011 (M8), SPM 42111 (UNC 5/16") and SPM 42011-M10 (M10), certificate NEMKO 03 ATEX 188X, must be used together with coupling transformer SPM 14196 or SPM 15127 when connected to external measuring units. They are installed inside the area with potentially explosive atmosphere in the same way as any standard SPM transducer. The Ex approved instruments, covered by the certificate NEMKO 03 ATEX 185, can be connected directly to the transducers if the environmental conditions permit.

Coupling Transformer

Coupling transformer SPM 14196 and SPM 15127, certificate NEMKO 03 ATEX 188X, connects the ex-proof transducers to the measuring equipment. While the transformer itself is ex-proof, it should always be mounted in none-explosive environment. The maximum cable length from the transducer via the transformer to the instrument is 100 m.

Technical data, transducer 42011 / 42111

Certificate of conformity: NEMKO 03 ATEX 188X

Ex certification:	I M1/II 1 GD EEx ia I/IIC T4
CE number:	CE 0470
Measuring range:	Max. 80 dB _{sv}
Temperature range:	– 20° C to + 80° C
External overpressure:	Max. 0.7 MPa (7 bar)
Design:	Sealed, stainless acid proof steel,
	Sandvik Grade:1802, EN:1.4523,
Connector tightness:	IP65 with TNC connector
	IP 67 with conn. SPM13008
Connector type:	TNC
Torque limit:	15 Nm

Technical data, transformer 14196 / 15127

Certificate of conformity: NEMKO 03 ATEX 188X Ex certification: I (M1)/II (1) GD [EEx ia] I/IIC CE number: **C (** 0470 Um: 250 V Temperature range: - 20° C to + 55° C Design: Fenylen oxide plastic, epoxy resin, sealed Connector type: TNC to transducer, BNC to instrument

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden

œ

Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

Technical data are subject to change without notice. ISO 9001 certified. © Copyright SPM 2005-08. TD-116 B

The Tachometer Probe 13882 is used together with handheld instruments, e.g. Analyzer A30Ex/Tester T30Ex for optical measurement of the rate of rotation and for contact measurement of as well the rate of rotation as the peripheral speed. This equipment is also permitted to be used in atmosphere with a potential risk for explosions.

Optical Measurement of the Rate of Rotation

A light beam is directed against a reflecting tape on the rotating object, from a distance of max. 0.3 m and from an angle of max. 45 °C.

Contact Measurement of rpm

The contact adapter TAD-20 with a rubber tipped contact centre, TAD-21/22, is screwed onto the tachometer probe and then held against the centre of a shaft end or a wheel.

Contact Measurement of Peripheral Speed

The contact adapter TAD-20 with contact wheel is held against the circumference of a shaft, a belt, etc. The speed is read out in units, depending on which contact wheel is used:

Meters per minute – use TAD-23, divide result by 10 Yards per minute – use TAD-24, divide result by 10 Feet per minute – use TAD-25, divide result by 2.

Part Numbers

- 13882 Tachometer probe with cable
- CAB-10 Spiral cable
- TAD-20 Contact adapter
- TAD-21 Contact centre, rpm, short
- TAD-22 Contact centre, rpm, long
- TAD-23 Contact wheel, meter/min.
- TAD-24 Contact wheel, yards/min.
- TAD-25 Contact wheel, feet/min.
- TAD-14 Reflecting tape, pad of 5 sheets
- TAD-16 Reflecting tape for thin shafts, 5 sheets

Technical Data

Certificate of conformity: Ex certification: CE number: Measuring range: Measuring distance: Dimensions, 13882: Temperature range NEMKO 03 ATEX 185 I M2/II 2 G EEx ib I/IIB T4 **(€** 0470 max. 19 999 rpm optical max. 0.3 m (1 ft.) 171 x ø 42 mm 0 to +50°C (32 to 120°F)

CE

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

Temperature Probe TEM-11Ex

The Temperature Probe TEM-11Ex is used together with SPM's handheld instruments of types Analyzer A30Ex and Tester T30Ex for measurement and recording of temperatures, also in environment with risk for explosion.

Connection of probe and probe tips

The probe, TEM-11Ex, is connected via its spiral cable, CAB-10, to the EXT connector of the instrument. This connector is also used for computer and tachometer probe. The TEMP menu turns up on the instrument as soon as the temperature probe is connected. It is also power supplied by the instrument. See further on in the instrument manual.

Two probe tips belong to TEM-11Ex:

- TEN-10 for measuring surface temperature on solids
- TEN-11 for measuring temperatures of liquids

When using a probe tip its connector is input into the front socket of the probe.

Temperature measurement

- connect TEM-11Ex to the instrument
- input the desired probe tip
- remove the protectice cap (TEN-10)
- the instrument is set for temperature measurement
- press the probe tip carefully against the component surface alternatively into the liquid
- keep the M button depressed until a reading value appears on the screen.

Handling

Handle and store the probe tips with care. The protective cap of the TEN-10 should always be kept on when not in use.

Ordering numbers

TEM-11ExTemperature probe with cableCAB-10Spiral cableTEN-10Probe tip for surface temperature of solidsTEN-11Probe tip for temperature of liquids

Technical specifications

Certificate of	conformity:	NEMKO 03 ATEX 185
Ex certification	on:	l M2/II 2 G EEx ib I/IIB T4
CE number:		€€ 0470
Ta:		0 to +50 YC (+32 to +120 YF)
Measuring ra	nge:	0 to + 300 YC (+ 32 to + 572 YF)
Max. offset:		± 5 YC (± 9 YF)
Measuring ur	ncertainty	± 1 YC
Sensitivity		10 mV/)C
Output range	e	0 to 3 V DC
Power supply	/	+ 5 V DC
Measuring ti	me:	approx 1 minute
Dimensions,	TEM-11Ex:	ø 42 x 118 mm
	TEN-10:	length 122 mm (with cap)
	TEN-11:	length 159 mm
Weight, TEM	-11Ex:	94 g

CE

Vibration Transducers Ex, Series SLD 200

The vibration transducers series SLD200 are piezo-electric accelerometers of compression type with built-in electronics, designed for vibration monitoring of industrial machines inside the area with potentially explosive atmosphere. They must be connected to Transducer Interface SPM 15226 or an Ex proof zener barrier when connected to an external measuring device. The barrier should always be mounted in none-explosive environment. The electrical signal is isolated from the transducer housing. The transducer is mounted against a smooth, flat surface on the machine.

Technical data

Certificate of conformity:	Nemko 05ATEX1179
Ex certification:	l M1/II 1GD T 112°C EEx ia l/IIC T4 Uj: 28 V, lj: 93 mA, Pj: 0.66 W, Cj: 54 nF, Lj: 10μH
CE number:	CE 0470
Transducer type:	Piezo-electric accelerometer of compres- sion type with built-in electronics
Transverse sensitivity:	max. 10%
Base strain sensitivity:	0.01 m/s²/µ strain typical
Linear frequency range:	2 Hz to 10 kHz
Max. peak acceleration:	600 m/s ²
Settling time:	6 sec
Bias voltage:	11 to 13 V (typical 12 V)
Temperature range:	-40° to +100° C (-40° to 210° F)
Power requirements:	24 V, 2 to 5 mA
Connector type:	SPM 15168 NEMKO 05ATEX1179 (for Group II category 1G, see CENELEC EN 50284 4.4.1). Not recommended for Group I.
	2 pin MIL style type aluminium (for Group II category 1G, see CENELEC EN 50284 4.3.1). Not recommeded for Group I.
Casing:	Stainless acid proof steel
Sealing:	IP 67
Torque limit:	10 Nm (7.4 lbf ft)
Weight:	115 grams (4 oz)
Cable capacitance:	Group IIA max 2.09 µF, Group IIB max 596 nF, Group IIC max 29 nF
Cable length:	IIC max 100 m (328 ft) (cable capacitance 210 pF/m)

Article number	mber Thread (t) Sensitivity *	
SLD 243 B	M8	$5 \text{ mV/m/s}^2 = 50 \text{ mV/g}$
SLD 243 F	UNF 1⁄4"	$5 \text{ mV/m/s}^2 = 50 \text{ mV/g}$
SLD 244 B	M8	$10 \text{ mV/m/s}^2 = 100 \text{ mV/g}$
SLD 244 F	UNF 1/4 "	$10 \text{ mV/m/s}^2 = 100 \text{ mV/g}$

* Individual value given on the calibration chart.

Mounting tools

81027 Holder for counterbore
81030 Pilot for UNF 1/4"
81031 Pilot for M8
81057 Counterbore, diameter 20 mm

To drill the mounting hole, use drill bit 6.9 mm (M8) or 5.5 mm (UNF 1/4"). Torque the transducer with a torque wrench and a 24 mm socket.

®

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

Vibration Transducers with Side Entry, SLD 244S

The vibration transducers series SLD244S are piezo-electric accelerometers of compression type with side entry and built-in electronics, designed for vibration monitoring of industrial machines inside the area with potentially explosive atmosphere. They must be connected to Transducer Interface SPM 15226 or an Ex proof zener barrier when connected to an external measuring device. The barrier should always be mounted in none-explosive environment. The electrical signal is isolated from the transducer housing. The transducer is mounted against a smooth, flat surface on the machine.

Technical data

Certificate of conformity:	Nemko 05ATEX1179X	
Ex certification:	I M1/II 1GD T 112°C EEx ia I/IIC T4U; 28 V, I;: 93 mA, P;: 0.66 W, C;: 54 nF, L;: 10µH	
CE number:	CE 0470	
Transducer type:	Piezo-electric accelerometer of compres- sion type with built-in electronics	
Nom. sensitivity, main axis:	10 mV/m/s ² * =100 mV/g	
Transverse sensitivity:	max. 10%	
Base strain sensitivity:	0.01 m/s²/µ strain typical	
Linear frequency range:	2 Hz to 10 kHz	
Max. peak acceleration:	600 m/s ²	
Settling time:	6 sec	
Bias voltage:	11 to 13 V (typical 12 V)	
Temperature range:	–40° to +100° C (–40° to 210° F)	
Power requirements:	24 V, 2 to 5 mA	
Connector type:	SPM 15168 NEMKO 05ATEX1179X (for Group II category 1G, see CENELEC EN 50284 4.4.1). Not recommended for Group I. The connector should not be exposed to flow of non-conductive media and hazardous electrostatic charging is avoided.	
	SPM 46105-L/46106-L NEMKO 05AT- EX1179X (for Group II category 1G, see CENELEC EN 50284 4.4.1). Recom- meded for Group I.	
Casing:	Stainless acid proof steel	
Sealing:	IP 67 together with appropriate connector	
Isolation:	Case isolated, > 1 Mohm	
Torque limit:	10 Nm (7.4 lbf ft)	
Weight:	200 grams (7 oz)	

Article number	Name	Thread (t)
SLD 244 S Vibration transducer		M8
SLD244S-UNF	Vibration transducer	UNF 1/4"-28

Cable capacitance:

Cable length:

Group IIA max 2.09 µF, Group IIB max 596 nF, Group IIC max 29 nF IIC max 100 m (328 ft) (cable capacitance 210 pF/m)

* Individual value given on the calibration chart.

Mounting tools

81393 Holder for counterbore81394 Pilot for UNF 1/4"81395 Pilot for M881396 Counterbore, diameter 30 mm

®

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

The transducer interface 15226 is a 8 channel interface for mounting in non-hazardous area and connected to the certified intrinsically safe vibration transducers SLD243B/F or SLD244B/F (Nemko 05ATEX1179).

The transducer interface separates the intrinsically safe vibration transducers, which can be installed in potentially explosive atmosphere, and various SPM vibration measuring devices such as Leonova, VCM, VMM/VMR and MG4. The interface and the measuring devices must be installed in a non-explosive environment.

The interfaces do not have a complete enclosure and need to be mounted in a box or cabinet with a degree of protection appropriate for the environmental conditions but at least IP20. The intrinsically safe terminals shall be separated from other electrical circuits in the enclosure with at least 50 mm.

Technical data

Ex certification:	l (M1)/II (1) GD [EEx ia] l/II C	
CE number:	CE 0470	
Um:	250 V	
Channels:	8	
Transducer type:	SLD243B/F, SLD244B/F	
Temperature range:	-20° to 70° C $~(68^\circ$ to 158° F)	
Dimensions:	204.5 x 143 x 27.1 mm	

Output parameters: Uo = 27.15 V Io = 90.5 mA Po = 0.615 W Co = 89 nF (IIC)

Lo = 4.5 mH (IIC)

 $Lo/Ro = 57.9 \ \mu H/\Omega$ (IIC)

Vibration Transducer TRV-26 / 27

The transducers TRV-26 and TRV-27 are piezo-electric accelerometers of compression type, designed for vibration monitoring of industrial machinery. Intended for use with the handheld instruments Tester T30Ex and Analyzer A30Ex in potentially explosive atmosphere.

The transducer is mounted in a threaded hole on a smooth, flat surface on the machine. It is delivered with three washers for adjusting the connector angle. Each washer turns the transducer 901°. Fix low noise coaxial cable (SPM 90176-L or 90292-L) with TNC connector with a clamp close to the transducer.

For installations in moist environments, use sealing TNC cable plugs SPM 13008 to prevent cable corrosion.

Technical data

Certificate of conformity:	NEMKO 03 ATEX 185
Ex certification:	I M2/II 2 G EEx ib I/IIB T4
CE number:	€€ 0470
Nominal sensitivity, main axis:	10 pC/m/s² (7-12 pC/m/s²) *
Transverse sensitivity:	max. 10%
Typical base strain sensitivity:	0.01 m/s²/∝ strain
Linear frequency range:	0 to 5000 Hz
Max. peak acceleration:	600 m/s ²
Temperature range:	0ƳC to +50ƳC
	(+32)°F to +120)°F)
Typical temperature drift:	0.25% / YC
Casing:	Stainless acid proof steel,
	Sandvik Grade:1802,
	EN:1.4523
Design:	Sealed
Connector tightness:	IP 65 with TNC connector
	IP 67 with conn. SPM 13008
Weight:	171 grams (6 oz)
Connector type:	TNC
Torque limit:	10 Nm (7.4 lbf/ ft)

* Individual value given on the calibration chart.

To drill the mounting hole, use drill bit 6.9 mm (M8) or 5.5 mm (UNF 1/4"-28). Torque and unscrew the transducer with a torque wrench and a 17 mm socket (SPM 81086).

Part Numbers

TRV-26	Vibration transducer, M 8
TRV-27	Vibration transducer, UNF 1/4"-28
13008	Sealing TNC cable plug
81027	Holder for counterbore
81057	Counterbore, diam. 20 mm
81030	Pilot for UNF 1/4" (TRV-27)
81031	Pilot for M8 (TRV-26)

Vibration Transducer TRV-28/29

The transducers TRV-28 and TRV-29 are piezo-electric accelerometers of compression type with built-in preamplifier, designed for vibration monitoring of industrial machinery inside the area with potentially explosive atmosphere. It must be used together with transducer interface SPM 14423, 14424 or 14540 when connected to an external measuring unit. The transducer interface should always be mounted in none-explosive environment. The cable length between transducer and measuring unit via the interface is max. 50 m.

The transducer is mounted against a smooth, flat surface on the machine. The transducers are delivered with three washers for adjusting the connector angle. Each washer turns the transducer 90)? The coaxial cable (SPM 90005-L or 90267-L) with TNC connector must be secured with a clamp close to the transducer. In moist environments, use sealing TNC cable plugs SPM 13008 to prevent cable corrosion.

Technical data

Certificate of conformity:	NEMKO 03 ATEX 187X
Ex certification:	I M1/II 1GD EEx ia I/II C T4
CE number:	€ 0470
Nominal sensitivity, main axis:	3 mV/mm/s *
Transverse sensitivity:	max. 10%
Typical base strain sensitivity:	0.01 m/s²/∝ strain
Linear frequency range:	3 to 5000 Hz
Max. peak acceleration:	600 m/s ²
Temperature range:	-20°C to +100°C
	(-4ƳF to +210ƳF)
Housing, base:	Stainless acid proof steel,
	Sandvik Grade:1802,
	EN:1.4523
Design:	sealed
Connector tightness:	IP 65 with TNC connector
	IP 67 with conn. SPM 13008
Connector type:	TNC
Weight:	171 grams (6 oz)
Torque limit:	10 Nm (7.4 lbf · ft)
Cable length:	max. 50 m (165 ft)

* Individual value given on the calibration chart.

®

SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

To drill the mounting hole, use drill bit 6.9 mm (M8) or 5.5 mm (UNF 1/4"-28). Torque and unscrew the transducer with a torque wrench and a 17 mm socket (SPM 81086).

Part Numbers

TRV-28	Vibration transducer Ex, M 8
TRV-29	Vibration transducer Ex, UNF 1/4"-28
13008	Sealing TNC cable plug
81027	Holder for counterbore
81057	Counterbore, diam. 20 mm
81030	Pilot for UNF 1/4" (TRV-29)
81031	Pilot for M8 (TRV-28)

Technical data are subject to change without notice. ISO 9001 certified. © Copyright SPM 2004-06. TD-127 B

The transducer interface 14424 is a 8 channel interface for mounting in non-hazardous area and connected to the certified intrinsically safe vibration transducers TRV-28 and TRV-29. The transducers are connected via coaxial cables with SMB connectors.

The transducer interface provides a galvanically separated connection between the intrinsically safe vibration transducer, which can be installed in potentially explosive atmosphere, and various SPM vibration measuring devices. The interface and the measuring devices must be installed in a non-explosive environment. Transducer and interface are connected to a common equipotential ground circuit.

The transducer measures vibration velocity and outputs a voltage, nominally 3.3 mV/mm/s. This signal is converted into three different outputs: mV/m/s² for Intellinova and VCM measuring units, μ A/mm/s for VMS measuring units, and pC/m/s² for MG4 and portable instruments.

The transducer interface is available in three versions with different connector configuration for the measuring devices.

The interfaces do not have a complete enclosure and need to be mounted in a box or cabinet with a degree of protection appropriate for the environmental conditions but at least IP20.

Technical data

Certificate of conformity: NEMKO 03 ATEX 186X

Ex certification:	I (M1)/II (1) GD [EEx ia] I/II C	
CE number:	CE 0470	
Um:	250 V	
Channels:	8	
Transducer type:	TRV-28, TRV-29	
Power supply:	24 V DC	
	(±10% according to EN 50082-2)	
Supply current:	max. 40 mA	
Temperature range:	-20° C to +70° C	
Dimensions:	204 x 160 x 30 mm	

Ordering number / connector type (output signal):

- 14424 A: SMB connectors for Intellinova/VCM (mV/m/s²) and portable instruments (pC/m/s²)
- 14424 B: SMB connectors for VMS (μ A/mm/s) and portable instruments (pC/m/s²)
- 14424 C: Screw terminals for Intellinova/VCM (mV/m/s²) and VMS (μ A/mm/s), SMB for instruments (pC/m/s²)
- 14424: SMB connectors for MG4 (pC/m/s²) and portable instruments (pC/m/s²)

SPM SPM Instrument AB • Box 504 • SE-645 25 Strängnäs • Sweden Tel +46 152 22500 • Fax +46 152 15075 • info@spminstrument.se • www.spminstrument.com

4-20 mA Vibration Transmitters, Ex

The intrinsically safe 4-20 mA vibration transmitters are piezo-electric accelerometers of compression type and provide a 4-20 mA output signal proportional to the true RMS value of vibration velocity. The transmitters can be connected to common process control systems (PLC, DCS).

The transmitters have an integrated cable (shielded, twisted pair) for connection to the measuring device. The connection must be made through a barrier mounted in the nonhazardous area.

Technical data

Certificate of conformity: Nemko 05ATEX1179

Executification	
EX certification:	
Barrier:	MTL7787 or any approved barrier with following safety description: Ua=28Vpc, Ja=93 mApc, Pa=0.65W
CE number:	(€ 0470
Output signal:	4 to 20 mA
Turn on time:	< 60 seconds
Transverse sensitivity	< 10%
Power requirements:	24 V DC
Loop resistance:	$R_{\scriptscriptstyle L}$ max. 300 Ω at 24 V DC
Casing material:	stainless acid proof steel
Temperature range:	$-40^{\rm a}\text{to}85^{\circ}\text{C}$ (– $40^{\circ}\text{to}185^{\circ}\text{F})$
Sealing:	IP 67
Isolation:	case isolated
Integral cable:	shielded twisted pair
Cable length:	max. 30 m (98 ft), standard 3 m (10 ft)
Torque limit:	10 Nm (7.4 lbf ft)
Weight:	115 grams (4 oz)

Article number	Thread (t)	Measuring range	Frequency range
SLD 823 C	M8	0 - 25 mm/s	2-1000 Hz
SLD 823 G	UNF 1/4 "	0 - 1 in/s	2-1000 Hz
SLD833 C	M8	0 - 25 mm/s	10-1000 Hz
SLD833 G	UNF 1/4 "	0 - 1 in/s	10-1000 Hz

NB: Standard cable length is 3 meters, but optional lengths may be ordered (ex. SLDXXXX-L where L = length in meters, max. 30 m).

Mounting tools

81027 Holder for counterbore
81057 Counterbore, diameter 20 mm
81030 Pilot for UNF 1/4"-28
81031 Pilot for M8

To drill the mounting hole, use drill bit 6.9 mm (M8) or 5.5 mm (UNF1/4"-28). Torque the transmitter with a 24 mm torque wrench.